533 research outputs found
Direct observation of nanoscale interface phase in the superconducting chalcogenide KFeSe with intrinsic phase separation
We have used scanning micro x-ray diffraction to characterize different
phases in superconducting KFeSe as a function of temperature,
unveiling the thermal evolution across the superconducting transition
temperature (T32 K), phase separation temperature (T520 K)
and iron-vacancy order temperature (T580 K). In addition to the
iron-vacancy ordered tetragonal magnetic phase and orthorhombic metallic
minority filamentary phase, we have found a clear evidence of the interface
phase with tetragonal symmetry. The metallic phase is surrounded by this
interface phase below 300 K, and is embedded in the insulating texture.
The spatial distribution of coexisting phases as a function of temperature
provides a clear evidence of the formation of protected metallic percolative
paths in the majority texture with large magnetic moment, required for the
electronic coherence for the superconductivity. Furthermore, a clear
reorganization of iron-vacancy order around the T and T is found
with the interface phase being mostly associated with a different iron-vacancy
configuration, that may be important for protecting the percolative
superconductivity in KFeSe.Comment: 6 pages, 4 figure
Neutron star properties and the equation of state of neutron-rich matter
We calculate total masses and radii of neutron stars (NS) for pure neutron
matter and nuclear matter in beta-equilibrium. We apply a relativistic nuclear
matter equation of state (EOS) derived from Dirac-Brueckner-Hartree-Fock (DBHF)
calculations. We use realistic nucleon-nucleon (NN) interactions defined in the
framework of the meson exchange potential models. Our results are compared with
other theoretical predictions and recent observational data. Suggestions for
further study are discussed.Comment: 13 pages, 9 figures, 1 table; Revised version, accepted for
publication in Physical Review
Beta-decay in odd-A and even-even proton-rich Kr isotopes
Beta-decay properties of proton-rich odd-A and even-even Krypton isotopes are
studied in the framework of a deformed selfconsistent Hartree-Fock calculation
with density-dependent Skyrme forces, including pairing correlations between
like nucleons in BCS approximation. Residual spin-isospin interactions are
consistently included in the particle-hole and particle-particle channels and
treated in Quasiparticle Random Phase Approximation. The similarities and
differences in the treatment of even-even and odd-A nuclei are stressed.
Comparison to available experimental information is done for Gamow-Teller
strength distributions, summed strengths, and half-lives. The dependence of
these observables on deformation is particularly emphasized in a search for
signatures of the shape of the parent nucleus.Comment: 29 pages, 16 figure
Hartree Fock Calculations in the Density Matrix Expansion Approach
The density matrix expansion is used to derive a local energy density
functional for finite range interactions with a realistic meson exchange
structure. Exchange contributions are treated in a local momentum
approximation. A generalized Slater approximation is used for the density
matrix where an effective local Fermi momentum is chosen such that the next to
leading order off-diagonal term is canceled. Hartree-Fock equations are derived
incorporating the momentum structure of the underlying finite range
interaction. For applications a density dependent effective interaction is
determined from a G-matrix which is renormalized such that the saturation
properties of symmetric nuclear matter are reproduced. Intending applications
to systems far off stability special attention is paid to the low density
regime and asymmetric nuclear matter. Results are compared to predictions
obtained from Skyrme interactions. The ground state properties of stable nuclei
are well reproduced without further adjustments of parameters. The potential of
the approach is further exemplified in calculations for A=100...140 tin
isotopes. Rather extended neutron skins are found beyond 130Sn corresponding to
solid layers of neutron matter surrounding a core of normal composition.Comment: Revtex, 29 pages including 14 eps figures, using epsfig.st
Benthic ecology of semi-natural coastal lagoons, in the Ria Formosa (Southern Portugal), Exposed to different water renewal regimes
Several studies in semi-natural coastal lagoons in the Ria Formosa lagoonal system have been carried out. These man-made water reservoirs behave as small lagoons with one opening to the tidal channels, which may be intermittent. Because of their size, these reservoirs are ideal sites for ecological studies. Water quality and macrobenthic fauna were analysed in five water reservoirs. All reservoirs received the same incoming water through a tidal channel, but they differed in water renewal regime. Multidimensional Scaling (MDS) and Discriminant Analysis were used to evaluate the similarity among sites, stations and sampling occasions. Different levels of taxonomic resolution (family, large taxonomic groups and phylum level) were also evaluated. The separation of sites and stations became unclear using high taxonomic levels. Results from the multivariate analyses suggest a slight differentiation of the stations according to sampling occasion but a clear differentiation of the several water reservoirs. Some of the lagoons studied with low water renewal rates showed strong environmental variations. They were characterised by low diversity indexes and abundance of small-sized organisms. Other lagoons, with high water renewal rates, showed low environmental variation and well diversified and structured benthic communities. The main environmental factor that seems to affect the benthic communities was the variation in salinity between neap and spring tides, which is related with the water renewal regime. Coastal lagoons offer a protected shallow habitat, which can be highly productive. Well structured communities, controlled by k-strategists, can develop and settle in leaky lagoons, that is, lagoons with wide entrance channels and tidal currents which guarantee a good water renewal. In these lagoons, biomass can accumulate in large organisms. In contrast, lagoons with a single narrow entrance, that may be closed for long periods, are characterised by persistent physical stress and are dominated by communities of small-sized r-strategists
Direct measurement of antiferromagnetic domain fluctuations
Measurements of magnetic noise emanating from ferromagnets due to domain
motion were first carried out nearly 100 years ago and have underpinned much
science and technology. Antiferromagnets, which carry no net external magnetic
dipole moment, yet have a periodic arrangement of the electron spins extending
over macroscopic distances, should also display magnetic noise, but this must
be sampled at spatial wavelengths of order several interatomic spacings, rather
than the macroscopic scales characteristic of ferromagnets. Here we present the
first direct measurement of the fluctuations in the nanometre-scale spin-
(charge-) density wave superstructure associated with antiferromagnetism in
elemental Chromium. The technique used is X-ray Photon Correlation
Spectroscopy, where coherent x-ray diffraction produces a speckle pattern that
serves as a "fingerprint" of a particular magnetic domain configuration. The
temporal evolution of the patterns corresponds to domain walls advancing and
retreating over micron distances. While the domain wall motion is thermally
activated at temperatures above 100K, it is not so at lower temperatures, and
indeed has a rate which saturates at a finite value - consistent with quantum
fluctuations - on cooling below 40K. Our work is important because it provides
an important new measurement tool for antiferromagnetic domain engineering as
well as revealing a fundamental new fact about spin dynamics in the simplest
antiferromagnet.Comment: 19 pages, 4 figure
Sex differences in vascular endothelial function and health in humans: Impacts of exercise.
This brief review presents historical evidence for the purported impacts of male and female sex hormones on the vasculature in humans, including effects on macro- and micro-vascular function and health. Impacts of aging on hormonal changes and artery function are considered in the context of the menopause. Physiological data are presented alongside clinical outcomes from large trials, in an attempt to rationalise disparate findings along the bench-to-bedside continuum. Finally, the theoretical likelihood that exercise and hormone treatment may induce synergistic and/or additive vascular adaptations is developed in the context of recent laboratory studies that have compared male and female responses to training. Differences between men and women in terms of the impact of age and cardiorespiratory fitness on endothelial function are addressed. Ultimately, this review highlights the paucity of high quality and compelling evidence regarding the fundamental impact, in humans, of sex differences on arterial function and the moderating impacts of exercise on arterial function, adaptation and health at different ages in either sex. This article is protected by copyright. All rights reserved
Microscopic calculations of medium effects for 200-MeV (p,p') reactions
We examine the quality of a G-matrix calculation of the effective
nucleon-nucleon (NN) interaction for the prediction of the cross section and
analyzing power for 200-MeV (p,p') reactions that populate natural parity
states in O, Si, and Ca. This calculation is based on a
one-boson-exchange model of the free NN force that reproduces NN observables
well. The G-matrix includes the effects of Pauli blocking, nuclear binding, and
strong relativistic mean-field potentials. The implications of adjustments to
the effective mass ansatz to improve the quality of the approximation at
momenta above the Fermi level will be discussed, along with the general quality
of agreement to a variety of (p,p') transitions.Comment: 36 pages, TeX, 18 figure
Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging
Defects and their interactions in crystalline solids often underpin material
properties and functionality as they are decisive for stability, result in
enhanced diffusion, and act as a reservoir of vacancies. Recently, lithium-rich
layered oxides have emerged among the leading candidates for the
next-generation energy storage cathode material, delivering 50 % excess
capacity over commercially used compounds. Oxygen-redox reactions are believed
to be responsible for the excess capacity, however, voltage fading has
prevented commercialization of these new materials. Despite extensive research
the understanding of the mechanisms underpinning oxygen-redox reactions and
voltage fade remain incomplete. Here, using operando three-dimensional Bragg
coherent diffractive imaging, we directly observe nucleation of a mobile
dislocation network in nanoparticles of lithium-rich layered oxide material.
Surprisingly, we find that dislocations form more readily in the lithium-rich
layered oxide material as compared with a conventional layered oxide material,
suggesting a link between the defects and the anomalously high capacity in
lithium-rich layered oxides. The formation of a network of partial dislocations
dramatically alters the local lithium environment and contributes to the
voltage fade. Based on our findings we design and demonstrate a method to
recover the original high voltage functionality. Our findings reveal that the
voltage fade in lithium-rich layered oxides is reversible and call for new
paradigms for improved design of oxygen-redox active materials
- …