276 research outputs found

    Effect of non-phytate phosphorus levels and phytase sources on the growth performance, serum biochemical and tibial parameters of broiler chickens

    Get PDF
    A 3×3 fattorial arrangement with dietary non-phytate phosphorus (NPP) levels and phytase sources (3- and 6-phytase) was conducted to evaluate the effects of NPP levels, phytase sources and their possible interactions on growth performance, serum biochemical and tibia parameters of broiler chickens from hatch to 42 days of age. A total of 540 1-day-old Arbor Acres male broiler chicks were randomly allocated into nine dietary treatments, each containing 5 replicates pens with 12 birds per pen. Interaction was statistically significant in the performance till day 21 of trial, supplementation of low NPP diet decreased body weight (BW) (P<0.001), depressed average daily gain (ADG) (P<0.001) and deteriorated average daily feed intake (ADFI) (P<0.001) over day 42. During the 8-to-21-day period, even if interaction between NPP levels and phytase sources was significant (P<0.01), BW, ADG and ADFI always increased due to dietary supplementation of phytase, with source not differing. Dietary high NPP enhanced serum calcium and P concentrations on day 21 and 42 (linear contrast, P<0.01), while decreased alkaline phosphatase (AKP) activity on day 42 (linear contrast, P<0.001), and interaction was not significant. Both dietary sources of phytase decreased serum AKP activities on day 42 (P<0.001), and urea nitrogen content on day 21 (P<0.01) and 42 (P<0.001). Both phytase improved ash percentage on day 21 and P content in tibia at 21 and 42 days of age (P<0.001). The results confirmed that dietary supplementation of phytase may enhance P availability during the 8-to-21-day period. Nevertheless, no difference between the two phytase sources was observed

    The “obesity paradox” in patients with atrial fibrillation:Insights from the Gulf SAFE registry

    Get PDF
    BACKGROUND: The prognostic impact of obesity on patients with atrial fibrillation (AF) remains under-evaluated and controversial. METHODS: Patients with AF from the Gulf Survey of Atrial Fibrillation Events (Gulf SAFE) registry were included, who were recruited from six countries in the Middle East Gulf region and followed for 12 months. A multivariable model was established to investigate the association of obesity with clinical outcomes, including stroke or systemic embolism (SE), bleeding, admission for heart failure (HF) or AF, all-cause mortality, and a composite outcome. Restricted cubic splines were depicted to illustrate the relationship between body mass index (BMI) and outcomes. Sensitivity analysis was also conducted. RESULTS: A total of 1,804 patients with AF and recorded BMI entered the final analysis (mean age 56.2 ± 16.1 years, 47.0% female); 559 (31.0%) were obese (BMI over 30 kg/m(2)). In multivariable analysis, obesity was associated with reduced risks of stroke/systematic embolism [adjusted odds ratio (aOR) 0.40, 95% confidence interval (CI), 0.18–0.89], bleeding [aOR 0.44, 95%CI, 0.26–0.74], HF admission (aOR 0.61, 95%CI, 0.41–0.90) and the composite outcome (aOR 0.65, 95%CI, 0.50–0.84). As a continuous variable, higher BMI was associated with lower risks for stroke/SE, bleeding, HF admission, all-cause mortality, and the composite outcome as demonstrated by the accumulated incidence of events and restricted cubic splines. This “protective effect” of obesity was more prominent in some subgroups of patients. CONCLUSION: Among patients with AF, obesity and higher BMI were associated with a more favorable prognosis in the Gulf SAFE registry. The underlying mechanisms for this obesity “paradox” merit further exploration

    The Glueball Spectrum from a Potential Model

    Get PDF
    The spectrum of two-gluon glueballs below 3 GeV is investigated in a potential model with dynamical gluon mass using variational method. The short distance potential is approximated by one-gluon exchange, while the long distance part is taken as a breakable string. The mass and size of the radial as well as orbital excitations up to principle quantum number n=3 are evaluated. The predicted mass ratios are compared with experimental and lattice results.Comment: Revtex, 6 pages with 1 eps figur

    μ+e<>μe+\mu^+e^- <---> \mu^- e^+ Transitions via Neutral Scalar Bosons

    Full text link
    With μeγ\mu\to e\gamma decay forbidden by multiplicative lepton number conservation, we study muonium--antimuonium transitions induced by neutral scalar bosons. Pseudoscalars do not induce conversion for triplet muonium, while for singlet muonium, pseudoscalar and scalar contributions add constructively. This is in contrast to the usual case of doubly charged scalar exchange, where the conversion rate is the same for both singlet and triplet muonium. Complementary to muonium conversion studies, high energy μ+eμe+\mu^+e^- \to \mu^- e^+ and eeμμe^-e^- \to \mu^- \mu^- collisions could reveal spectacular resonance peaks for the cases of neutral and doubly charged scalars, respectively.Comment: 12 pages, ReVtex, 3 figures available upon reques

    Ca2+ Cycling in Heart Cells from Ground Squirrels: Adaptive Strategies for Intracellular Ca2+ Homeostasis

    Get PDF
    Heart tissues from hibernating mammals, such as ground squirrels, are able to endure hypothermia, hypoxia and other extreme insulting factors that are fatal for human and nonhibernating mammals. This study was designed to understand adaptive mechanisms involved in intracellular Ca2+ homeostasis in cardiomyocytes from the mammalian hibernator, ground squirrel, compared to rat. Electrophysiological and confocal imaging experiments showed that the voltage-dependence of L-type Ca2+ current (ICa) was shifted to higher potentials in ventricular myocytes from ground squirrels vs. rats. The elevated threshold of ICa did not compromise the Ca2+-induced Ca2+ release, because a higher depolarization rate and a longer duration of action potential compensated the voltage shift of ICa. Both the caffeine-sensitive and caffeine-resistant components of cytosolic Ca2+ removal were more rapid in ground squirrels. Ca2+ sparks in ground squirrels exhibited larger amplitude/size and much lower frequency than in rats. Due to the high ICa threshold, low SR Ca2+ leak and rapid cytosolic Ca2+ clearance, heart cells from ground squirrels exhibited better capability in maintaining intracellular Ca2+ homeostasis than those from rats and other nonhibernating mammals. These findings not only reveal adaptive mechanisms of hibernation, but also provide novel strategies against Ca2+ overload-related heart diseases

    Compilation and Network Analyses of Cambrian Food Webs

    Get PDF
    A rich body of empirically grounded theory has developed about food webs—the networks of feeding relationships among species within habitats. However, detailed food-web data and analyses are lacking for ancient ecosystems, largely because of the low resolution of taxa coupled with uncertain and incomplete information about feeding interactions. These impediments appear insurmountable for most fossil assemblages; however, a few assemblages with excellent soft-body preservation across trophic levels are candidates for food-web data compilation and topological analysis. Here we present plausible, detailed food webs for the Chengjiang and Burgess Shale assemblages from the Cambrian Period. Analyses of degree distributions and other structural network properties, including sensitivity analyses of the effects of uncertainty associated with Cambrian diet designations, suggest that these early Paleozoic communities share remarkably similar topology with modern food webs. Observed regularities reflect a systematic dependence of structure on the numbers of taxa and links in a web. Most aspects of Cambrian food-web structure are well-characterized by a simple “niche model,” which was developed for modern food webs and takes into account this scale dependence. However, a few aspects of topology differ between the ancient and recent webs: longer path lengths between species and more species in feeding loops in the earlier Chengjiang web, and higher variability in the number of links per species for both Cambrian webs. Our results are relatively insensitive to the exclusion of low-certainty or random links. The many similarities between Cambrian and recent food webs point toward surprisingly strong and enduring constraints on the organization of complex feeding interactions among metazoan species. The few differences could reflect a transition to more strongly integrated and constrained trophic organization within ecosystems following the rapid diversification of species, body plans, and trophic roles during the Cambrian radiation. More research is needed to explore the generality of food-web structure through deep time and across habitats, especially to investigate potential mechanisms that could give rise to similar structure, as well as any differences

    Hyperglycemic Myocardial Damage Is Mediated by Proinflammatory Cytokine: Macrophage Migration Inhibitory Factor

    Get PDF
    Diabetes has been regarded as an inflammatory condition which is associated with left ventricular diastolic dysfunction (LVDD). The purpose of this study was to examine the expression levels of macrophage migration inhibitory factor (MIF) and G protein-coupled receptor kinase 2 (GRK2) in patients with early diabetic cardiomyopathy, and to investigate the mechanisms involved in MIF expression and GRK2 activation.83 patients in the age range of 30-64 years with type 2 diabetes and 30 matched healthy men were recruited. Left ventricular diastolic function was evaluated by cardiac Doppler echocardiography. Plasma MIF levels were determined by ELISA. To confirm the clinical observation, we also studied MIF expression in prediabetic rats with impaired glucose tolerance (IGT) and relationship between MIF and GRK2 expression in H9C2 cardiomyoblasts exposed to high glucose.Compared with healthy subjects, patients with diabetes have significantly increased levels of plasma MIF which was further increased in diabetic patients with Left ventricular diastolic dysfunction (LVDD). The increased plasma MIF levels in diabetic patients correlated with plasma glucose, glycosylated hemoglobin and urine albumin levels. We observed a significant number of TUNEL-positive cells in the myocardium of IGT-rats but not in the control rats. Moreover, we found higher MIF expression in the heart of IGT with cardiac dysfunction compared to that of the controls. In H9C2 cardiomyoblast cells, MIF and GRK2 expression was significantly increased in a glucose concentration-dependant manner. Furthermore, GRK2 expression was abolished by siRNA knockdown of MIF and by the inhibition of CXCR4 in H9C2 cells.Our findings indicate that hyperglycemia is a causal factor for increased levels of pro-inflammatory cytokine MIF which plays a role in the development of cardiomyopathy occurring in patients with type 2 diabetes. The elevated levels of MIF are associated with cardiac dysfunction in diabetic patients, and the MIF effects are mediated by GRK2

    Dynamic genome evolution in a model fern

    Get PDF
    The large size and complexity of most fern genomes have hampered efforts to elucidate fundamental aspects of fern biology and land plant evolution through genome-enabled research. Here we present a chromosomal genome assembly and associated methylome, transcriptome and metabolome analyses for the model fern species Ceratopteris richardii. The assembly reveals a history of remarkably dynamic genome evolution including rapid changes in genome content and structure following the most recent whole-genome duplication approximately 60 million years ago. These changes include massive gene loss, rampant tandem duplications and multiple horizontal gene transfers from bacteria, contributing to the diversification of defence-related gene families. The insertion of transposable elements into introns has led to the large size of the Ceratopteris genome and to exceptionally long genes relative to other plants. Gene family analyses indicate that genes directing seed development were co-opted from those controlling the development of fern sporangia, providing insights into seed plant evolution. Our findings and annotated genome assembly extend the utility of Ceratopteris as a model for investigating and teaching plant biology

    Fosmid library end sequencing reveals a rarely known genome structure of marine shrimp Penaeus monodon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The black tiger shrimp (<it>Penaeus monodon</it>) is one of the most important aquaculture species in the world, representing the crustacean lineage which possesses the greatest species diversity among marine invertebrates. Yet, we barely know anything about their genomic structure. To understand the organization and evolution of the <it>P. monodon </it>genome, a fosmid library consisting of 288,000 colonies and was constructed, equivalent to 5.3-fold coverage of the 2.17 Gb genome. Approximately 11.1 Mb of fosmid end sequences (FESs) from 20,926 non-redundant reads representing 0.45% of the <it>P. monodon </it>genome were obtained for repetitive and protein-coding sequence analyses.</p> <p>Results</p> <p>We found that microsatellite sequences were highly abundant in the <it>P. monodon </it>genome, comprising 8.3% of the total length. The density and the average length of microsatellites were evidently higher in comparison to those of other taxa. AT-rich microsatellite motifs, especially poly (AT) and poly (AAT), were the most abundant. High abundance of microsatellite sequences were also found in the transcribed regions. Furthermore, <it>via </it>self-BlastN analysis we identified 103 novel repetitive element families which were categorized into four groups, <it>i.e</it>., 33 WSSV-like repeats, 14 retrotransposons, 5 gene-like repeats, and 51 unannotated repeats. Overall, various types of repeats comprise 51.18% of the <it>P. monodon </it>genome in length. Approximately 7.4% of the FESs contained protein-coding sequences, and the Inhibitor of Apoptosis Protein (IAP) gene and the Innexin 3 gene homologues appear to be present in high abundance in the <it>P. monodon </it>genome.</p> <p>Conclusions</p> <p>The redundancy of various repeat types in the <it>P. monodon </it>genome illustrates its highly repetitive nature. In particular, long and dense microsatellite sequences as well as abundant WSSV-like sequences highlight the uniqueness of genome organization of penaeid shrimp from those of other taxa. These results provide substantial improvement to our current knowledge not only for shrimp but also for marine crustaceans of large genome size.</p
    corecore