26 research outputs found

    A False Start in the Race Against Doping in Sport: Concerns With Cycling’s Biological Passport

    Get PDF
    Professional cycling has suffered from a number of doping scandals. The sport’s governing bodies have responded by implementing an aggressive new antidoping program known as the biological passport. Cycling’s biological passport marks a departure from traditional antidoping efforts, which have focused on directly detecting prohibited substances in a cyclist’s system. Instead, the biological passport tracks biological variables in a cyclist’s blood and urine over time, monitoring for fluctuations that are thought to indirectly reveal the effects of doping. Although this method of indirect detection is promising, it also raises serious legal and scientific concerns. Since its introduction, the cycling community has debated the reliability of indirect biological-passport evidence and the clarity, consistency, and transparency of its use in proving doping violations. Such uncertainty undermines the legitimacy of finding cyclists guilty of doping based on this indirect evidence alone. Antidoping authorities should address these important concerns before continuing to pursue doping sanctions against cyclists solely on the basis of their biological passports

    Engineering the Melanocortin-4 Receptor to Control Constitutive and Ligand-Mediated Gs Signaling In Vivo

    Get PDF
    The molecular and functional diversity of G protein–coupled receptors is essential to many physiological processes. However, this diversity presents a significant challenge to understanding the G protein–mediated signaling events that underlie a specific physiological response. To increase our understanding of these processes, we sought to gain control of the timing and specificity of Gs signaling in vivo. We used naturally occurring human mutations to develop two Gs-coupled engineered receptors that respond solely to a synthetic ligand (RASSLs). Our Gs-coupled RASSLs are based on the melanocortin-4 receptor, a centrally expressed receptor that plays an important role in the regulation of body weight. These RASSLs are not activated by the endogenous hormone α-melanocyte-stimulating hormone but respond potently to a selective synthetic ligand, tetrahydroisoquinoline. The RASSL variants reported here differ in their intrinsic basal activities, allowing the separation of the effects of basal signaling from ligand-mediated activation of the Gs pathway in vivo. These RASSLs can be used to activate Gs signaling in any tissue, but would be particularly useful for analyzing downstream events that mediate body weight regulation in mice. Our study also demonstrates the use of human genetic variation for protein engineering

    N-acetylation of hypothalamic α-melanocyte-stimulating hormone and regulation by leptin

    No full text
    The central melanocortin system is critical in the regulation of appetite and body weight, and leptin exerts its anorexigenic actions partly by increasing hypothalamic proopiomelanocortin (POMC) expression. The POMC-derived peptide α-melanocyte-stimulating hormone (αMSH) is a melanocortin 4 receptor agonist, and its potency in reducing energy intake is strongly increased by N-acetylation. The reason for the higher biological activity of N-acetylated αMSH (Act-αMSH) compared with that of N-desacetylated αMSH (Des-αMSH) is unclear, and regulation of acetylation by leptin has not been investigated. We show here that total hypothalamic αMSH levels are decreased in leptin-deficient ob/ob mice and increased in leptin-treated ob/ob and C57BL/6J mice. The increase in total αMSH occurred as soon as 3 h after leptin injection and was entirely due to an increase in Act-αMSH. Consistent with this observation, leptin rapidly induced the enzymatic activity of a N-acetyltransferase in the hypothalamus of mice. In 293T cells expressing the melanocortin 4 receptor, Act-αMSH is far more potent than Des-αMSH in stimulating cAMP accumulation, an effect caused by a dramatically increased stability of Act-αMSH. Moreover, Des-αMSH is rapidly degraded in the hypothalamus after intracerebroventricular injection in rats and was less potent in inhibiting energy intake. The results suggest that leptin activates a N-acetyltransferase in POMC neurons, leading to increased hypothalamic levels of Act-αMSH. Due to its increased stability, this posttranslational modification of αMSH may play a critical role in leptin action via the central melanocortin pathway
    corecore