150 research outputs found

    TCP over High Speed Variable Capacity Links: A Simulation Study for Bandwidth Allocation

    Get PDF
    New optical network technologies provide opportunities for fast, controllable bandwidth management. These technologies can now explicitly provide resources to data paths, creating demand driven bandwidth reservation across networks where an applications bandwidth needs can be meet almost exactly. Dynamic synchronous Transfer Mode (DTM) is a gigabit network technology that provides channels with dynamically adjustable capacity. TCP is a reliable end-to-end transport protocol that adapts its rate to the available capacity. Both TCP and the DTM bandwidth can react to changes in the network load, creating a complex system with inter-dependent feedback mechanisms. The contribution of this work is an assessment of a bandwidth allocation scheme for TCP flows on variable capacity technologies. We have created a simulation environment using ns-2 and our results indicate that the allocation of bandwidth maximises TCP throughput for most flows, thus saving valuable capacity when compared to a scheme such as link over-provisioning. We highlight one situation where the allocation scheme might have some deficiencies against the static reservation of resources, and describe its causes. This type of situation warrants further investigation to understand how the algorithm can be modified to achieve performance similar to that of the fixed bandwidth case

    Improving the sensitivity of the hop index in patients with an ACL deficient knee by transforming the hop distance scores

    Get PDF
    BACKGROUND: The one leg hop for distance is one of the most commonly employed functional tests utilized in the evaluation of the ACL deficient and reconstructed patient. While the reliability of the hop test scores has been well established, validity studies have revealed low sensitivity rates in detecting functional limitations using the hop index (the ratio or percentage of limb performance). However, the impact of the inherent limitations associated with the hop index have not been investigated to date. One specific limitation relates to the impact of the differences in the underlying hop distance scores. Therefore, this pilot study set out to determine: 1) the impact that between limb differences in hop distance has on the sensitivity of the hop index in detecting functional limitations and; 2) whether a logarithmic transformation of the underlying hop distance scores improves the sensitivity of the hop index. METHODS: A cross sectional design involving the evaluation of one leg hop for distance performance in a consecutive sample of 10 ACL deficient males with an isolated ACL tear awaiting reconstructive surgery and nine gender, age-matched controls. RESULTS: In the ACL deficient, the hop index was associated with the distance hopped on the non-injured limb (r = -0.66, p = 0.04) but not on the injured limb. Transformation (logarithmic) of the hop distance scores and re-calculation of the hop index using the transformed scores increased the sensitivity of the hop index in the detection of functional limitations from 20 to 60% and 50 to 70% using the normal limb symmetry reference norms of ≥ 85% and 90% respectively. CONCLUSION: The distance hopped on the non-injured limb is a critical factor in detecting functional limitations using the hop index in patients with an ACL deficient knee. Logarithmic transformation of the hop distance scores minimizes the effect of the arithmetic differences between limbs however; the sensitivity of the hop index in detecting abnormal limb symmetry remains low

    Impact of a probiotic fermented milk in the gut ecosystem and in the systemic immunity using a non-severe protein-energy-malnutrition model in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malnutrition affects the immune response, causing a decrease of defence mechanisms and making the host more susceptible to infections. Probiotics can reconstitute the intestinal mucosa and stimulate local and systemic immunity. The aim of this work was evaluate the effects of a probiotic fermented milk as a complement of a re-nutrition diet, on the recovery of the intestinal barrier, and mucosal and systemic immune functions in a murine model of non-severe protein-energy-malnutrition. Its potential protection against <it>Salmonella enterica </it>serovar Typhimurium (<it>S</it>. Typhimurium) infection was also analyzed.</p> <p>Methods</p> <p>Mice were undernourished and divided into 3 groups according to the dietary supplement received during re-nutrition (milk, probiotic fermented milk or its bacterial free supernatant) and compared to well-nourished and malnourished mice. They were sacrificed previous to the re-nutrition and 5 days post re-nutrition. The phagocytic activity of macrophages from spleen and peritoneum and the changes in the intestinal histology and microbiota were evaluated. Different immune cell populations and cytokine productions were analyzed in the small intestine tissues. The effect of the re-nutrition supplements on the systemic immunity using OVA antigen and against an infection with <it>S. </it>Typhimurium was also studied.</p> <p>Results</p> <p>Probiotic fermented milk was the most effective re-nutrition diet that improved the intestinal microbiota. Its administration also increased the number of IgA+ cells, macrophages and dendritic cells. The production of different cytokine (IFN-γ, TNF-α, IL-12) by these cells and the phagocytic activity in peritoneum and spleen was also increased. This re-nutrition diet also stimulated the systemic immune response against OVA antigen which was diminished after the malnutrition period and also improved the host response against <it>S. </it>Typhimurium, decreasing the spread of pathogenic bacteria to the liver and the spleen. The importance of the metabolites released during milk fermentation was also demonstrated through the analysis of the bacterial free supernatant obtained from the probiotic fermented milk, but the whole product showed the best effects in the parameters evaluated in this study.</p> <p>Conclusions</p> <p>The administration of probiotic fermented milk as a dietary supplement during the re-nutrition process in a murine immunodeficiency model by malnutrition could be a good adjuvant diet to improve the gut and systemic immune response for the protection against <it>Salmonella </it>infection.</p

    Balance in single-limb stance after surgically treated ankle fractures: a 14-month follow-up

    Get PDF
    BACKGROUND: The maintenance of postural control is fundamental for different types of physical activity. This can be measured by having subjects stand on one leg on a force plate. Many studies assessing standing balance have previously been carried out in patients with ankle ligament injuries but not in patients with ankle fractures. The aim of this study was to evaluate whether patients operated on because of an ankle fracture had impaired postural control compared to an uninjured age- and gender-matched control group. METHODS: Fifty-four individuals (patients) operated on because of an ankle fracture were examined 14 months postoperatively. Muscle strength, ankle mobility, and single-limb stance on a force-platform were measured. Average speed of centre of pressure movements and number of movements exceeding 10 mm from the mean value of centre of pressure were registered in the frontal and sagittal planes on a force-platform. Fifty-four age- and gender-matched uninjured individuals (controls) were examined in the single-limb stance test only. The paired Student t-test was used for comparisons between patients' injured and uninjured legs and between side-matched legs within the controls. The independent Student t-test was used for comparisons between patients and controls. The Chi-square test, and when applicable, Fisher's exact test were used for comparisons between groups. Multiple logistic regression was performed to identify factors associated with belonging to the group unable to complete the single-limb stance test on the force-platform. RESULTS: Fourteen of the 54 patients (26%) did not manage to complete the single-limb stance test on the force-platform, whereas all controls managed this (p < 0.001). Age over 45 years was the only factor significantly associated with not managing the test. When not adjusted for age, decreased strength in the ankle plantar flexors and dorsiflexors was significantly associated with not managing the test. In the 40 patients who managed to complete the single-limb stance test no differences were found between the results of patients' injured leg and the side-matched leg of the controls regarding average speed and the number of centre of pressure movements. CONCLUSION: One in four patients operated on because of an ankle fracture had impaired postural control compared to an age- and gender-matched control group. Age over 45 years and decreased strength in the ankle plantar flexors and dorsiflexors were found to be associated with decreased balance performance. Further, longitudinal studies are required to evaluate whether muscle and balance training in the rehabilitation phase may improve postural control

    A Canonical Biomechanical Vocal Fold Model

    Get PDF
    The present article aimed at constructing a canonical geometry of the human vocal fold (VF) from subject-specific image slice data. A computer-aided design approach automated the model construction. A subject-specific geometry available in literature, three abstractions (which successively diminished in geometric detail) derived from it, and a widely used quasi two-dimensional VF model geometry were used to create computational models. The first three natural frequencies of the models were used to characterize their mechanical response. These frequencies were determined for a representative range of tissue biomechanical properties, accounting for underlying VF histology. Compared with the subject-specific geometry model (baseline), a higher degree of abstraction was found to always correspond to a larger deviation in model frequency (up to 50% in the relevant range of tissue biomechanical properties). The model we deemed canonical was optimally abstracted, in that it significantly simplified the VF geometry compared with the baseline geometry but can be recalibrated in a consistent manner to match the baseline response. Models providing only a marginally higher degree of abstraction were found to have significant deviation in predicted frequency response. The quasi two-dimensional model presented an extreme situation: it could not be recalibrated for its frequency response to match the subject-specific model. This deficiency was attributed to complex support conditions at anterior-posterior extremities of the VFs, accentuated by further issues introduced through the tissue biomechanical properties. In creating canonical models by leveraging advances in clinical imaging techniques, the automated design procedure makes VF modeling based on subject-specific geometry more realizable

    Outcome and patients' satisfaction after functional treatment of acute lateral ankle injuries at emergency departments versus family doctor offices

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In some Western countries, more and more patients seek initial treatment even for minor injuries at emergency units of hospitals. The initial evaluation and treatment as well as aftercare of these patients require large amounts of personnel and logistical resources, which are limited and costly, especially if compared to treatment by a general practitioner. In this study, we investigated whether outsourcing from our level 1 trauma center to a general practitioner has an influence on patient satisfaction and compliance.</p> <p>Methods</p> <p>This prospective, randomized study, included n = 100 patients who suffered from a lateral ankle ligament injury grade I-II (16, 17). After radiological exclusion of osseous lesions, the patients received early functional treatment and were shown physical therapy exercises to be done at home, without immobilization or the use of stabilizing ortheses. The patients were randomly assigned into two groups of 50 patients each: Group A (ER): Follow-up and final examination in the hospital's emergency unit. Group B (GP): Follow-up by general practitioner, final examination at hospital's emergency unit. The patients were surveyed regarding their satisfaction with the treatment and outcome of the treatment.</p> <p>Results</p> <p>Female and male patients were equally represented in both groups. The age of the patients ranged from 16 – 64 years, with a mean age of 34 years (ER) and 35 years (GP). 98% (n = 98) of all patients were satisfied with their treatment, and 93% (n = 93) were satisfied with the outcome. For these parameters no significant difference between the two groups could be noted (p = 0.7406 and 0.7631 respectively). 39% of all patients acquired stabilizing ortheses like ankle braces (Aircast, Malleoloc etc.) on their own initiative. There was a not significant tendency for more self-acquired ortheses in the group treated by general practicioners (p = 0,2669).</p> <p>Conclusion</p> <p>Patients who first present at the ER with a lateral ankle ligament injury grade I-II can be referred to a general practitioner for follow-up treatment without affecting patient satisfaction regarding treatment and treatment outcome.</p

    Knee movement patterns of injured and uninjured adolescent basketball players when landing from a jump: A case-control study

    Get PDF
    BACKGROUND: A common knee injury mechanism sustained during basketball is landing badly from a jump. Landing is a complex task and requires good coordination, dynamic muscle control and flexibility. For adolescents whose coordination and motor control has not fully matured, landing badly from a jump can present a significant risk for injury. There is currently limited biomechanical information regarding the lower limb kinetics of adolescents when jumping, specifically regarding jump kinematics comparing injured with uninjured adolescents. This study reports on an investigation of biomechanical differences in landing patterns of uninjured and injured adolescent basketball players. METHODS: A matched case-control study design was employed. Twenty-two basketball players aged 14–16 years participated in the study: eleven previously knee-injured and eleven uninjured players matched with cases for age, gender, weight, height and years of play, and playing for the same club. Six high-speed, three-dimensional Vicon 370 cameras (120 Hz), Vicon biomechanical software and SAS Version 8 software were employed to analyse landing patterns when subjects performed a "jump shot". Linear correlations determined functional relationships between the biomechanical performance of lower limb joints, and paired t-tests determined differences between the normalised peak biomechanical parameters. RESULTS: The average peak vertical ground reaction forces between the cases and controls were similar. The average peak ground reaction forces between the cases and controls were moderately correlated (r = -0.47). The control (uninjured) players had significantly greater hip and knee flexion angles and significantly greater eccentric activity on landing than the uninjured cases (p < 0.01). CONCLUSION: The findings of the study indicate that players with a history of knee injuries had biomechanically compromised landing techniques when compared with uninjured players matched for gender, age and club. Descriptions (norms) of expected levels of knee control, proprioceptive acuity and eccentric strength relative to landing from a jump, at different ages and physical developmental stages, would assist clinicians and coaches to identify players with inappropriate knee performance comparable to their age or developmental stage

    The instantaneous helical axis of the subtalar and talocrural joints: a non-invasive in vivo dynamic study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An understanding of rear-foot (talocrural and subtalar joints) kinematics is critical for diagnosing foot pathologies, designing total ankle implants, treating rear-foot injuries and quantifying gait abnormalities. The majority of kinematic data available have been acquired through static cadaver work or passive <it>in vivo </it>studies. The applicability of these data to dynamic <it>in vivo </it>situations remains unknown. Thus, the purpose of this study was to fully quantify subtalar, talocrural and calcaneal-tibial <it>in vivo </it>kinematics in terms of the instantaneous helical axis (IHA) in twenty-five healthy ankles during a volitional activity that simulated single-leg toe-raises with partial-weight support, requiring active muscle control.</p> <p>Methods</p> <p>Subjects were each placed supine in a 1.5 T MRI and asked to repeat this simulated toe-raise while a full sagittal-cine-phase contrast (dynamic) MRI dataset was acquired. From the cine-phase contrast velocity a full kinematic description for each joint was derived.</p> <p>Results</p> <p>Nearly all motion quantified at the calcaneal-tibial joint was attributable to the talocrural joint. The subtalar IHA orientation and position were highly variable; whereas, the talocrural IHA orientation and position were extremely consistent.</p> <p>Conclusion</p> <p>The talocrural was well described by the IHA and could be modeled as a fixed-hinge joint, whereas the subtalar could not be.</p

    The mechanical effects of short-circuit currents in open air substations.

    Full text link
    SHort-circuit mechanical effects in substation is investigated by tests and simulations. Simplified equations are deduced to prepare standardisation of a procedure forthe design of substation against short-circuit mechanicle effects

    Supporting Pharmacovigilance Signal Validation and Prioritization with Analyses of Routinely Collected Health Data: Lessons Learned from an EHDEN Network Study

    Get PDF
    Introduction: Individual case reports are the main asset in pharmacovigilance signal management. Signal validation is the first stage after signal detection and aims to determine if there is sufficient evidence to justify further assessment. Throughout signal management, a prioritization of signals is continually made. Routinely collected health data can provide relevant contextual information but are primarily used at a later stage in pharmacoepidemiological studies to assess communicated signals. Objective: The aim of this study was to examine the feasibility and utility of analysing routine health data from a multinational distributed network to support signal validation and prioritization and to reflect on key user requirements for these analyses to become an integral part of this process. Methods: Statistical signal detection was performed in VigiBase, the WHO global database of individual case safety reports, targeting generic manufacturer drugs and 16 prespecified adverse events. During a 5-day study-a-thon, signal validation and prioritization were performed using information from VigiBase, regulatory documents and the scientific literature alongside descriptive analyses of routine health data from 10 partners of the European Health Data and Evidence Network (EHDEN). Databases included in the study were from the UK, Spain, Norway, the Netherlands and Serbia, capturing records from primary care and/or hospitals. Results: Ninety-five statistical signals were subjected to signal validation, of which eight were considered for descriptive analyses in the routine health data. Design, execution and interpretation of results from these analyses took up to a few hours for each signal (of which 15–60 minutes were for execution) and informed decisions for five out of eight signals. The impact of insights from the routine health data varied and included possible alternative explanations, potential public health and clinical impact and feasibility of follow-up pharmacoepidemiological studies. Three signals were selected for signal assessment, two of these decisions were supported by insights from the routine health data. Standardization of analytical code, availability of adverse event phenotypes including bridges between different source vocabularies, and governance around the access and use of routine health data were identified as important aspects for future development. Conclusions: Analyses of routine health data from a distributed network to support signal validation and prioritization are feasible in the given time limits and can inform decision making. The cost–benefit of integrating these analyses at this stage of signal management requires further research
    corecore