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Abstract. New optical network technologies provide opportunities for
fast, controllable bandwidth management. These technologies can now
explicitly provide resources to data paths, creating demand driven band-
width reservation across networks where an applications bandwidth needs
can be meet almost exactly. Dynamic synchronous Transfer Mode (DTM)
is a gigabit network technology that provides channels with dynamically
adjustable capacity. TCP is a reliable end-to-end transport protocol that
adapts its rate to the available capacity. Both TCP and the DTM band-
width can react to changes in the network load, creating a complex sys-
tem with inter-dependent feedback mechanisms. The contribution of this
work is an assessment of a bandwidth allocation scheme for TCP flows
on variable capacity technologies. We have created a simulation environ-
ment using ns-2 and our results indicate that the allocation of bandwidth
maximises TCP throughput for most flows, thus saving valuable capacity
when compared to a scheme such as link over-provisioning. We highlight
one situation where the allocation scheme might have some deficiencies
against the static reservation of resources, and describe its causes. This
type of situation warrants further investigation to understand how the
algorithm can be modified to achieve performance similar to that of the
fixed bandwidth case.
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1 Introduction

Reliable transfer of data across the Internet has become an important need. TCP
[Pos81] is the predominant protocol for data transfer on the Internet as it offers a
reliable end-to-end byte stream transport service. Emerging optical networking
technologies provide fast, cheap and variable capacity bandwidth links to be
setup in milliseconds allowing data-driven virtual circuits to be created when
needed. One example of an application that could use such a service is the
backup of critical data.

Exact allocation of bandwidth to TCP flows would alleviate complex traffic
engineering problems such as provisioning and dimensioning. Allocating band-
width to TCP is a complex problem; the TCP congestion control mechanism
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plus network dynamics can make exact allocation for TCP data flows difficult.
Te contribution of this paper is the performance evaluation of an estimation
algorithm, which measures the rate of TCP flows and allocates capacity on a
DTM network.

Dynamic Synchronous Transfer Mode [GHP92] [BHL+96] is a gigabit ring
based networking technology that can dynamically adjust its bandwidth. DTM
offers a channel abstraction, where a channel consists of a number of slots. The
number of slots allocated to a channel determines its bandwidth. The slots can
be allocated statically by pre-configured parameters, or dynamically adjusted to
the needs of an application. In DTM it is possible to allocate a channel to a
specific TCP connection, or to multiplex several TCP connections over the same
channel. We mostly investigated cases where each TCP connection is assigned to
a separate channel, but show one case in which two TCP connections compete
for a single channel.

TCP uses an end-to-end congestion control mechanism to find the optimal
bandwidth at which to send data. In order to get good throughput with TCP
operating over a technology such as DTM, it is important to understand the
dynamic behaviour of the two schemes, especially when evaluating a bandwidth
allocation strategy. TCP is capable of adjusting its rate whilst DTM is capable of
changing its capacity. In dynamically interacting systems, it is possible to create
unwanted oscillations resulting in under allocation or over allocation of band-
width to TCP flows. In order to evaluate the performance of the DTM bandwidth
allocator, we have implemented the algorithm in the network simulator ns-2. We
have performed a number of simulations that include single and multiple TCP
flows, links with varying delay characteristics, different buffer sizes, plus TCP
Reno and Tahoe variants.

Section 2 outlines DTM and our estimation algorithm, simulation exper-
iments are given in Section 3, related work follows in Section 4, and finally
conclusions and a discussion are given in Section 5.

2 Dynamic Synchronous Transfer Mode

DTM uses a TDM scheme where time slots are divided into control and data
slots. The control slots are statically allocated to a node and are used for sig-
nalling. Every node has at least one control slot allocated that corresponds to
512 kbps of signalling capacity. The data slots are used for data transmission
and each slot is always owned by a node. A node is only allowed to send in slots
that it owns. The ownership of the slots is controlled by a distributed algorithm,
where the nodes can request slots from other nodes. The algorithms for slot dis-
tribution between the nodes affect the network performance. Each slot contains
64 bits and the slots are grouped in 125 microsecond long cycles. The bit rate
is determined by the number of slots in a cycle, so one slot corresponds to a
bit rate of 512 kbps. By allocating a different numbers of slots, the transmission
rate for a channel can be changed in steps of 512 kbps.



2.1 TCP Rate Estimation and DTM Capacity Allocation

TCP’s rate is simply estimated as the number of incoming bytes per second. The
algorithm which is presented next calculates the rate by dividing the number of
bytes by the time elapsed. The rate of each flow is calculated ten times per
second, i.e. every 100 ms. This value has been chosen as a compromise between
good measurement granularity and processing overhead. Actual slot allocation
or changes are done only once every second, this is slightly coarser due to the
overhead of nodes potentially having to negotiate slots.

We now describe the TCP bandwidth estimator. Figure 1 shows the algorithm
used to estimate the rate of a given flow. As stated, every 100 ms the estimator
measures the rate new in bits per second and compares it with the previous value,
current. A delta of the difference is reduced by DTM SHIFT in the algorithm.
Note this delta is simply shifted, keeping the complexity of the calculation to
a minimum. In this case it is three, so the current value is changed by one
eighth towards the recently measured flow value, as shown in the first half of the
algorithm. This shift effectively determines how aggressively TCP’s rate can be
tracked. Finally the units are changed from bits per second to slots per second
by dividing the rate by the channel bandwidth and assigning this value to the
variable curr slot.

dtm calc bw ( new ) {
DTM SHIFT = 3
MARGIN = 0.75
CORRIDOR = 2

/* first half - Move last estimate closer */
diff = new - current
if ( diff < 0 ) {

diff = (-diff) À DTM SHIFT
current = current - diff // Decreasing

} else {
diff = diff À DTM SHIFT
current = current + diff // Increasing

}
curr slot = current / slot bw

/* Second half - Last estimate within bounds ? */
if ( curr slot > upper bound ) || (curr slot < lower bound ) {

dynBw = curr slot + MARGIN + ( CORRIDOR / 2 )
/* only change bw once per sec */
change link bw (dynBw)
}

}

Fig. 1. Algorithm for bandwidth estimation



The second half of the algorithm determines whether it is necessary to change
the slot allocations. The current slot value is compared to upper and lower
bounds before making any changes. An offset, 0.75 of a slot, MARGIN equivalent to
394 kbits, is added to the TCP throughput estimate so the DTM allocation will
be a little over the estimated rate. Figure 2 shows two plots using the topology
shown in Figure 3, the leftmost plot is the actual measured bandwidth of a single
TCP flow. The right plot shows the effect of adding MARGIN and measuring the
rate in slots. If the allocation was based purely on this estimate it would under
allocate bandwidth, causing TCP reduce its window because of congestion on
the link. The rightmost graph is coarser due to the second granularity of the
bandwidth changes. The plots illustrate how the estimation can be used to give
TCP the bandwidth it needs and hence maximise throughput. One can also see
in this figure that estimation starts after 100 ms but a change is not applied to
the offered bandwidth before the first second. Note also the y-axis in Figure 2b)
is in slots per second and not bits per second as in the left figure. Additionally,
a CORRIDOR is an amount the estimate is allowed to vary before slots are added
or decreased for a channel. This is not visible in the plots but will be illustrated
later. The purpose is to avoid small fluctuations causing unnecessary costly slot
allocation changes. As mentioned, slot changes can be time consuming due to
the distributed nature of DTM [AMMS98].
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Fig. 3. Simulation topology

3 Simulation Tests

This section presents simulation results that show how the DTM estimation al-
gorithm adapts the offered bandwidth to TCP flows. Figure 3 shows the topology
we used for the following simulations. The 5 Mbits per second link between nodes
two and three is the bottleneck link. The link between nodes three and four is
the DTM link with dynamically allocated bandwidth. Initially the DTM link is
set to 10 Mbits per second. This value was chosen simply for convenience, since
simulating a 622 Mbits per second link with large bandwidth flows is not feasible
in a packet level simulator like ns-2. The other two links also have a capacity of
10 Mbits per second. A bulk transfer TCP Reno flow was setup between nodes
one and five and the throughput measured at node three, in order to allocate
bandwidth on the outgoing DTM link. In this first simulation the queue length
in node 2 was set to 50 packets, figure 4 shows the result. In congestion avoid-
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Fig. 4. Dynamically allocated bandwidth on a DTM link (50 packet queue)

ance the TCP flow increases the congestion window by the maximum segment
size bytes each RTT seconds. However, the increase is not made each RTT. In-
stead TCP will increase MSS/congestion window bytes each time an ACK is



received. This means that after RTT seconds, the congestion window was in-
creased by MSS bytes. This continues until the TCP flow has filled the buffer
space at the bottleneck link, resulting in a packet drop. TCP Reno, using fast
retransmit and fast recovery, then reduces the congestion window by half and
continues with congestion avoidance. The congestion window, therefore, follows
a sawtooth curve. If enough buffer space is available at the bottleneck link, the
rate of the TCP flow, perceived after the second link, is not affected when the
congestion window is reduced. This mechanism and result can be seen in left and
middle plots of Figure 4. The rightmost plot shows the dynamically allocated
bandwidth on the DTM link. It can be seen that TCP actually manages to get
about one Megabit per second more on the DTM link due to the extra capacity
allocated to the flow through the addition of MARGIN. It should be stated in a real
deployment of TCP over DTM that this value is settable by network operators.
Its affect can be tested in simulation environments such as this if necessary.

Figure 5 shows the results when the queue size at the bottleneck link is
limited to ten packets. This could be the case if a static allocation over the
DTM network has been setup. Now the rate of the TCP flow changes with
the congestion window, but the changes are too small to affect the dynamic
allocation of bandwidth. This is due to the corridor mentioned earlier to avoid
small changes from incurring changes in the slot allocation scheme. Figure 6
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Fig. 5. Dynamically allocated bandwidth on a DTM link (10 packet queue)

shows the case in which the simulation with a small queue size and a 50 ms link
delay has been repeated using TCP Tahoe instead of TCP Reno. TCP Tahoe
only relies on the retransmission timer and does not use fast retransmit. When a
packet is dropped, the congestion window is set to one and slow-start is invoked.
We can see that the allocation on the DTM link closely follows the sharp saw
tooth behaviour of TCP Tahoe Figure 6c).
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Fig. 6. Tahoe TCP on a DTM link (10 packet queue)

3.1 Two Flows Per Channel and Small Router Buffers

So far, we have shown cases where the dynamic allocation of bandwidth has
allowed TCP to maximise its throughput. We illustrate one case next when the
algorithm has weaknesses to allocate sufficient bandwidth to two TCP flows. In
this scenario the fixed link case performs better. Figure 7 shows the topology
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Fig. 7. Simulation topology with two flows

that we used. It differs from previous simulations in that the flows have their
own input buffer at node two but share a common output buffer in the same
node. This buffer is also served ten times faster than in previous cases by the
fact that the link feeding the DTM network was set to 100 Mbits per second. In
this case the queue length of a DTM link, node three, was limited to ten packets.



Figure 8 shows the results when the link capacity between nodes 3 and 4 was
fixed at 10 Mbits per second. We can see that both flows manage to reach their 5
Mbits throughput, effectively sharing equally one DTM channel. If we now turn
our attention to the same simulation but replace the static link between nodes
three and four with a variable one the results are quite different. Figure 9 shows
the dynamically allocated bandwidth on the DTM link. Neither of the flows
manage to reach 5 Mbits per second on their output links. In this case packets
are being dropped in the output buffer of node three. This can be seen in the
congestion windows of the two flows, they never manage to maintain the size of
the static case, about 100 segments. The problem in this case is the estimation
algorithm should not decrease the estimation if packets are being dropped. The
algorithm is symmetric, it increases or decreases depending on the measured rate.
Additionally the effect of the short queue does not help, there is not sufficient
pressure with a small queue to keep the rate up, with a larger buffer there is
more pressure due to accumulated packets. Interestingly, the algorithm actually
correctly allocates for the observed throughput, however does not maximise the
TCP throughput.

4 Related work

Work on estimating and maximising TCP throughput for variable capacity links
is relatively scarce. However comprehensive studies have been done related to
the performance of TCP on ATM networks [Bon98] [MG95] [CLN96]. The main
conclusions of the works are similar, the traffic classes of ATM are poorly suited
to the bursty needs of TCP, due to the traffic contracts needed by ATM classes.
The conclusion of [Bon98] is that the complexity of choosing traffic parameters
for ABR is not in proportion to the benefits of carrying TCP/IP traffic. The
CBR class is too simple for TCP, as only the peak rate is specified. Most of
the DTM research in this area focuses on the distributed slot allocation for
example [AMMS98].

Clark and Fang propose a framework for allocating bandwidth to different
users during congestion [CF98]. The focus of the work is TCP bulk-data trans-
fers. The authors attempt to keep TCP flows in congestion avoidance in the best
case, and fast recovery phase in the worst case, by avoiding dropping several
packets of the same flow in the same RTT. The conclusions of the given work
are similar to those of [Bon98], that TCP connections can have difficulties to fill
their alloted bandwidth. The work resembles ours in that they attempt to allo-
cate bandwidth between different flows in a fair manner. It differs from ours in
that we assume that the network can change its offered bandwidth and we focus
on maximising TCP throughput, rather than trying to maintain a TCP state in
the face of adverse network conditions. In addition, we allocate bandwidth to
flows not only when the network is congested but also in normal situations as
well.

Sterbenz and Krishnan investigate TCP over Load-Reactive Links [KS01].
They use a hysteresis control mechanism for capacity allocation. Buffer levels
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Fig. 8. Experiment 1 static link: The senders do not drop packets at the ingress node
and achieve their constrained link throughput 5Mbits per second.
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are monitored (as in [Lun98]) and if the occupancy is greater than a threshold
the capacity is increased and vice versa. This approach is not the same as ours,
we measure the rate of incoming TCP flows at the router before the DTM
link rather than the buffer level in the router at the outgoing DTM link. A
single TCP flow is simulated and the authors state that the control parameters
should be carefully chosen. Poor parameter choice can have the opposite effect,
resulting in TCP not being able to operate. The work resembles ours in that a
method is presented to react to network load and allocate bandwidth for TCP
accordingly. It differs in that we measure the throughput of individual flows and
allocate bandwidth from this measurements, where they use the buffer length as
a measure of the load. Our system is less scalable, but more accurate, as we can
ascertain exactly the bandwidth of the incoming TCP connections.

Lundqvist evaluates different algorithms for bandwidth allocation for DTM
channels transporting IP traffic [Lun98]. The algorithms were assessed with re-
spect to throughput, delay and bandwidth changes per second. TCP rate ad-
justment is done by placing the incoming packets into a buffer and adding and
removing slots if the level of the buffer exceeds continuously maintained thresh-
old values. He concludes that adaptive strategies are recommended for TCP,
however too frequent changes can be undesirable in a DTM network due to the
processing cost. The main conclusion from this work is that the choice of algo-
rithm can play a significant role in the performance. This work is similar to ours
in that the goal is a slot allocation for TCP traffic over DTM. We also agree
it is important to keep the computational complexity low and DTM bandwidth
changes as infrequent as possible. It differs from ours in that we measure the
rate of each TCP flow, whilst he looks at the outgoing buffer length as a sign to
increase or decrease the number of slots. We look more into network scenarios
such as different link delays, buffer lengths and use two different TCP types,
TCP Reno and Tahoe.

5 Conclusions

We have analysed a complex problem, allocating bandwidth to a protocol that
can adapt its rate. The benefits of guaranteeing throughput for an application
using TCP can be very beneficial, in particular the cost savings when paying per
unit of transmission. The goal was to investigate the behaviour of our bandwidth
estimation scheme, its affect on TCP and on a network that can vary its capacity,
in this case DTM. Our work however is not only limited to DTM technology,
we can draw the same conclusions about TCP performance on any high speed
network technology that offers variable capacity.

We have written a simulation environment using ns-2, and found that in
almost all cases, TCP could be allocated a share of the channel identical to its
measured throughput on a fixed network. We identified one scenario in which the
algorithm could be improved, when packets are dropped at a router with a small
buffer. In this situation the estimation algorithm should not reduce the offered
bandwidth further, resulting in less offered bandwidth and further packet loss.



Instead it should allow TCP to find the new capacity available in the network.
The combination of the small buffer size plus high speed input link aggravates
this observed deficiency.

In a simulation environment the parameter space is large. Due to space limita-
tions we have only discussed a key subset of possible buffer sizes, link bandwidths,
link delays and TCP variants. Further results, plus validation tests for using ns-2
in these kind of simulations, can be found in the technical report [AM01]. Pa-
rameters that are worthy of further investigation include sampling times and
estimation thresholds.
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