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A Canonical Biomechanical Vocal Fold Model
Pinaki Bhattacharyaa, Thomas H. Siegmunda

aSchool of Mechanical Engineering, Purdue University, West Lafayette, IN 47906 USA

Summary: The present paper aimed at constructing a canonical geometry of the human vocal fold

(VF) from subject-specific image-slice data. A computer-aided-design approach automated the model

construction. A subject-specific geometry available in literature, three abstractions (which successively

diminished in geometric detail) derived from it, and a widely-used quasi two-dimensional VF model ge-

ometry were used to create computational models. The first three natural frequencies of the models were

used to characterize their mechanical response. These frequencies were determined for a representa-

tive range of tissue biomechanical properties, accountingfor underlying VF histology. Compared to the

subject-specific geometry model (baseline), a higher degree of abstraction was found to always corre-

spond to a larger deviation in model frequency (up to 50% in the relevant range of tissue biomechanical

properties). The model we deemed canonical was optimally abstracted, in that it significantly simplified

the VF geometry compared to the baseline geometry, but can berecalibrated in a consistent manner to

match the baseline response. Models providing only a marginally higher degree abstraction were found to

have significant deviation in predicted frequency response. The quasi two-dimensional model presented

an extreme situation: it could not be recalibrated for its frequency response to match the subject-specific

model. This deficiency was attributed to complex support conditions at anterior-posterior extremeties of

the VFs, accentuated by further issues introduced through the tissue biomechanical properties. In creating

canonical models by leveraging advances in clinical imaging techniques, the automated design procedure

makes VF modeling based on subject-specific geometry more realizable.

Key Words: vocal fold, geometric model, tissue biomechanical properties, eigenfrequencies

INTRODUCTION

The pair of vibrating vocal folds (VFs)† within the lar-

ynx are important components relevant to the produc-

tion of voice. The need to understand the phonation

mechanism and biomechanical factors affecting voice

health drives research using VF models. Figure 1 shows

†Table 1 summarizes all symbols and definitions.

the anatomy of a typical pair of VFs situated in the lar-

ynx. In this paper, we focus on the VFs system com-

prising the lamina propria, vocal fold ligament and un-

derlying thyro-arytenoid muscle, bounded by the hard

arytenoid and thyroid cartilages. The system bound-

ary is depicted in figure 1. We aim to develop rules

for VF model construction such that VF biomechanical

response agrees with that of a corresponding subject-
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specific VF. A subject-specific VF will have the fea-

tures shown in figure 1 in general, along with details

particular to itself. The envisaged model is canonical in

that any further abstraction in geometry, with respect to

that of the subject-specific VF, will cause its mechanical

response to deviate from the subject response by more

than a specified tolerance. This model can then be used

to understand and predict phonation and voice health

characteristics of the subject-specific VF.

Application of continuum mechanics principles in

the analysis of voice processes has received signifi-

cant attention in the past. Examples include studies of

the fundamental processes of phonation mechanism1,2,

the modeling of continuum response using advanced

constitutive theories3,4,5, the determination of mechan-

ical stress within the folds6, the computations of im-

pact pressures at contacting glottal surfaces during vi-

bration7,8,9. In a continuum mechanics setting, accu-

rate geometrical representation of the system of inter-

est is essential to model a problem. The geometric de-

scription of vocal folds in continuum mechanics stud-

ies commonly are based on significant abstraction of

the anatomical and geometrical features. We hypoth-

esize that the degree of model abstraction will influence

the predicted biomechanical response of the VFs, and

that appropriate rules of model abstractions can be de-

veloped such that the relevant mechanisms underlying

phonation can effectively be analyzed and described.

The desire to obtain an abstraction of subject-specific

anatomical features of the VFs is driven by advantanges

in ease of modeling and analysis, but also by the desire

to extract fundamental insight by eliminating confound-

ing factors.

An underlying principle in the abstraction process is

that, to a specified order of accuracy, the mechanism be-

ing studied is not affected by the geometric features that

are absent in the abstracted model. Therefore, unless

both the original and the abstracted structure are actu-

ally analyzed for their relevant behavior, and the prop-

erty to be studied (the fundamental frequency, a mag-

nitude of stress, etc.) is shown to be insensitive to the

features removed – the results obtained from the model

are not relevant.

In this paper we present a method that utilizes slice-

by-slice section images of the three-dimensional VF to

develop subject-specific models for phonation. Such

image information is available from magnetic resonance

imaging (MRI), computed tomography (CT), but also

from more traditional methods based on castings like

those obtained by̌Sidlof et al.10 In particular, MRI data

of VFs is the most detailed in-vivo anatomical infor-

mation available, and provides11,12,13superior image re-

sults when compared to CT technology. Continuum me-

chanics analysis of a VF model created based on MRI

data14 demonstrated the importance of careful model

abstraction. These authors found significant differences

in the self-oscillation response of a model based on MRI

data when compared to mechanisms predicted6,7,15,16,17

from the commonly employed M5 model18.

The M5 model was developed as a canonical model

for the analysis of glottal air flow around the VFs, but

was subsequently also used in continuum mechanics

analysis of the VFs themselves. Its geometry is a spec-

ification of the planar curve lying at the intersection of

the medial surface and the mid-coronal section of the

VF. This specification was a development over previous

two-dimesional modeling efforts of Ishizaka and Flana-

gan19 , Scherer et al.20 , van den Berg et al.21 , Gauffin

et al.22 As only air flow was of interest, the model

does not account for underlying histology of the VF vol-
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ume, and due to its 2D character leaves the lateral ex-

tent and anterior–posterior (ap) description of the glot-

tal surface as free parameters. Significant computational

research effort1,23,18,24,25has been directed at the M5

and similar other 2D geometries. Simple extensions of

this model into 3D space26,27,17,18,24have been used to

conduct computational and experimental research. The

limitations of the M5 model were also recognized and

extensions of the original model were defined,28,29,30,7

emerging from a need to explain particular experimen-

tal observations absent in a model of simpler geometric

definition.

In contrast to the path of gradual sophistication of the

M5 canonical model, we believe that a more robust ap-

proach to model definition is to conduct sensitivity stud-

ies on gradual simplifications of a subject-specific VF

geometry. Such an approach is considered in the present

study, and in addition, the interaction of VF model ge-

ometry with tissue biomechanical properties was also

considered.

The work documented in Pickup and Thomson14

partially follows the same direction of approach as it ap-

pears to be the first attempt at sensitivity analysis with

a subject-specific geometry as the baseline. In partic-

ular it was observed in Pickup and Thomson14 that

mucosal-waves were possible only in an MRI-motivated

geometric model and not in the canonical model. How-

ever, in a flow-structure-interaction analysis as con-

sidered in Pickup and Thomson14 VFs undergo very

highly nonlinear deformation. Thus it is difficult to re-

late difference in deformation characteristics to differ-

ences in geometry. In the present paper, instead, we

seek to investigate a more basic feature of the VF model,

namely the natural frequency. This allows for a broader

range of geometric abstraction level and consideration

of the interaction with the tissue’s biomechanical prop-

erties. Although MR imaging of human VFs is able to

differentiate hard cartilages in the larynx from soft tis-

sue31,12,13,32, we are unaware of its capability to recog-

nize and distinguish underlying tissue histology. There-

fore, an assumed cover thickness is used to define an

identical body-cover partition in all the models.

In the analysis we focus on the first three natural

modes of vibration as these were shown by Zhang

et al.33 to account for 99% of the energy at the onset

of self-oscillation.

A rational modeling methodology is presented, that

goes from highly geometrically accurate models to sub-

sequently abstracted ones in a graduated manner. Along

this path, removal of each feature can be tested for sen-

sitivity to the object of analysis. We demonstrate that

knowledge of tissue properties is crucial to capture the

correct frequency response even under conditions of ac-

curate geometric representation.

The structure of this paper is as follows. In the fol-

lowing section, we present a general and versatile for-

mulation which enables the creation of geometric model

of a particular human VF configuration. The versa-

tility of the formulation – implemented in a commer-

cial computer-aided design (CAD) software package –

is further demonstrated by incorporating geometric ab-

stractions. The formulation is exercised by considering

a particular subject-specific VF configuration as previ-

ously documented in the literature10. Geometrically ab-

stracted models based on the same subject-specific data

are constructed.

It is important that the analysis model capture impor-

tant features of the histological structure present in the

tissue. In particular, for VFs we follow the body-cover

theory, which is used to represent the histology of the
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VF tissue. It separates the VF into a stiffer and isotropic

interior part (body) and a more compliant anisotropic

domain (cover) near the surface3. In the context of

model development, a partitioning strategy allowing for

body-cover regions in the model geometry is developed.

Farley34 studied the effect of activation of various lig-

ament and muscle structures in the larynx on the fre-

quency of phonation. Activation levels corresponded to

tension within these structures. The effect of muscle ac-

tivation is analyzed herein by controlling the stiffness

of the body region. Transverse anisotropy of the cover

region is modeled using a consistent micromechanical

model.

FE analysis is conducted to determine the first three

natural frequencies of the models in dependence of tis-

sue properties. Variation in levels of body-cover hetero-

geneity and anisotropy of tissue biomechanical proper-

ties are considered in isolation as well as in combina-

tion. Our results demonstrate the effect of tissue proper-

ties on eigenfrequency. In the light of these results, we

conclude by pointing to future research required to cre-

ate effective but accurate computational models of VFs.

METHODS

Vocal fold geometry

Image-slice based methods

A method is described by which digitized image-slice

data representing the 3D image of the VF configuration

can be converted into a 3D continuum model. The first

step is to define a coordinate system and origin. The

coordinate axes are aligned with respect to established

anatomical planes. Conventions followed in previous

research35,36 assume the cricoid cartilage (CC) to be

symmetric about the mid-saggital plane. Therefore, us-

ing image-slice data for CC, we define the mid-saggital

plane as the one coinciding with its plane of symme-

try. Similarly, the mid-coronal plane is identified as that

located midway between the anterior-commissure and

the line joining the left and right crico-arytenoid joints.

The origin of the coordinate system is located arbitrarily

on the intersection of the mid-coronal and mid-saggital

planes. Thex-axis increases in the superior direction,

the y-axis is normal to the saggital planes and positive

y-values correspond to the right VF. A right-hand co-

ordinate system is then determined by fixing thez-axis

such that it increases going from posterior to anterior,

and is perpendicular to all coronal planes.

We assume that images ofM coronal planes (parallel

to each other) are available. Each coronal plane corre-

sponds toz = z(i), (i = 1 . . .M). Each of theM images

is individually digitized to obtainN points at equal in-

tervals along the profile. In the inferior–superior (is)

direction geometric features of human VFs change sub-

stantially over a characteristic distance of 5 mm, and

the characteristic radius of curvature of the glottal sur-

face is of the order of 1 mm18. Therefore consider-

ing N = 20 results in a reasonably resolved profile.

We denote the coordinates of these points by the label

P(i)
j

∣

∣

∣

∣

L,R
≡ (x(i)

j , y(i)
j

∣

∣

∣

∣

L,R
, z(i)) where j = 1 . . .N and sub-

scriptsL andR denote points on the left and right VF

respectively. The outer boundary vocal tract is assumed

to be cylindrical, and its diameterH is chosen such that

it satisfies

H >

√

[

y(i)
j

∣

∣

∣

∣

L,R

]2
+

[

z(i))
]2

∀P(i)
j . (1)

Two circles, of diameterH, centered at (xmin, 0, 0) and

(xmax, 0, 0) are used to form the closed curvesS0 and

SN+1 that mark, respectively, the inferior and superior

extremeties of the model. Therefore the locationsxmin
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andxmax along the inferior–superior axis satisfy

xmin < inf
P(i)

j

x(i)
j , xmax > sup

P(i)
j

x(i)
j . (2)

The procedure for creating the model geometry is

shown in figure 2. A software implementation, by

means of a Python script in a computational code, i.e.

ABAQUS/CAE, was employed to code the process.

This script is available from the authors upon request.

Subsequently, the subject-specific geometric model in-

corporating subject-specific anatomical feature geome-

try is referred to as model SS.

The M5 model

The M5 model geometry as of Scherer et al.18 is con-

sidered for comparison. As mentioned earlier, the M5

model in particular has seen widespread use in both nu-

merical and experimental modeling. The abstraction

from subject-specific geometry to a quasi-2D M5 (ex-

truded geometry) will cause an error of some magnitude

in the model response. If this error is not significant,

finer alterations on the M5 model to obtain other 2D

specifications can be justified, in order to fine tune the

model response. Otherwise, the choice between an ex-

truded M5 model or any other extruded model is moot.

Thereby, comparing with the M5 model here also serves

as a substitute for other 2D or extruded geometry formu-

lations.

In particular, the M5 is defined as described in fig-

ure 3 (a). In models based on the 2D M5 geometry,

the left and right VFs are disjoint, and symmetry about

the mid-saggital plane is assumed. The 2D profile does

not specify a VF depth (D/2, medial–lateral extent) and

D is a free parameter in the model. In figure 3 (a), it

can be seen that horizontal line forming the superior

edge and the slanted line leading up to the glottal en-

trance can be extended to form a VF of any given depth.

In Scherer et al.18 , physical replicas were constructed

with D/2 = 11.48 mm. Note that the subglottal surface

makes an angle of 40◦ with the horizontal.

Another free parameter of the M5 profile is the glot-

tal angleψ. The profile was originally intended to be

used in static glottal models where the flow field around

the geometry was the object of investigation. The pa-

rameterψ accounted for the dynamic glottal angle that

followed the inferior-superior motion of the VFs during

phonation. In models capable of moving and/or deform-

ing, settingψ = 0◦ suffices, because the glottal angle

changes once motion commences. In Scherer et al.18 ,

the physical replicas used a range of values forψ to anal-

yse its effect on flow characteristics.

Being a 2D formulation, the length (ap-extent) of the

VF is also unspecified in the M5 model. Beginning

with Alipour et al.28 , who set the foundation for FE

modeling of VFs, 3D models based on the M5 profile

typically8,29,37,38,27identified theap-extent of the model

with the ap-extent of the glottal orifice. In Scherer

et al.18 , for instance, physical replicas of the VFs had a

constant lengthL = 12.0 mm. The 3D model was cre-

ated by extruding the 2D M5 profile through this length.

For the present study we consider M5 geometry as

of figure 3 (b). This profile of the M5 model considers

ψ = 0◦ and is extended upto the outer tracheal wall by

settingD = H − dg.

Abstracted vocal fold geometries

Departing from the subject-specific VF geometry, the

procedure in figure 2 allows for the creation of models

with geometric abstractions made at various levels. An

example of this process is present in the following. The

ap variation of theM coronal images used to construct
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the subject-specific model SS are simplified in a process

in which the mid-coronal features (x(M/2)
j , y(M/2)

j , z(M/2))

are retained from SS. HereM/2 is the index of the mid-

coronal plane. TheM coronal images are replaced by

the point-set

P̄(i)
j

∣

∣

∣

∣

L,R
=

(

x̄(i)
j , ȳ(i)

j

∣

∣

∣

∣

L,R
, z̄(i)

j

)

, (3)

where

x̄(i)
j = x(M/2)

j ,

ȳ(i)
j

∣

∣

∣

∣

L,R
= ±a























1−

















z̄(i)
j

b

















2
k






















1/2

,

and z̄(i)
j = z(i)

j . (4)

Thereby,a, b andk are functions of ¯x(i)
j , andH is the

maximum width of the glottal tract. This definition

ensures the glottal opening appears to be smooth and

rounded when viewed from the superior aspect. The pa-

rameter

k = k(x̄(i)
j ) =

1
4
+

3
4

(

a− dg/2

H/2− dg/2

)1/2

, (5)

ranges between 0.25 and 1.0, and controls the curvature

at the anterior and posterior ends of the glottal opening

along the inferior-superior direction. Note that the case

k → 0 approaches a rectangle of dimensions 2b × 2a

and the casek = 1 corresponds to an ellipse inscribed in

this rectangle. Thereby, the shape of the glottal opening

is more rounded near the glottal orifice compared to an

ellipse of identical axis measures.

The glottal half-width at the mid-coronal section is

a(x̄(i)
j ) =

1
2

(

ȳ(i)
j

∣

∣

∣

∣

R
− ȳ(i)

j

∣

∣

∣

∣

L

)

, (6)

and defines the semi-minor axis of the glottal tract cross

section. Theapextent, identical to the semi-major axis,

is

b(x̄(i)
j ) = H/2− w

(

H/2− a
H/2− dg/2

)

, (7)

which allows for a depthw at the anterior and posterior

ends of the folds near the glottal orifice. This model

defined by these parameters is henceforth called R0. Its

mid-coronal geometry is identical to that of the subject-

specific model SS, figure 3 (b).

Additional VF geometries are created by merging the

shape information of the R0 model with the M5 model.

A model R2 is created by replacing the mid-coronal

profile in model R0 by the particular section shape of

the M5 model profile considered in the previous section

and depicted in figure 3 (b). The 3D configuration is

then created by repeating the procedure outlined in the

previous paragraph.

Model R1 is an intermediate configuration between

model R0 and model R2. Figure 3 (b) shows that in

R0, the surface inferior to the glottal entrance (or the

subglottal surface) makes an angle of approximately

53◦ with the horizontal, compared to 40◦ in model R2.

Model R1 differs from model R2 only in the region in-

ferior to the glottal-entrance, where it closely follows

model R0. The rest of the procedure for creating model

R1 is identical to that of model R2. We also consider

a model in which the mid-coronal section of model R1

is extruded through a given lengthL to create the 3D

model M5R1.

Partitioning into body-cover domains

In Hirano39 , it was shown that the VF volume is not ho-

mogeneous. Following the notation of the body-cover

model, distinct histology is attributed to two distinct re-

gions of the VF. The outer, compliant cover layer, is

thereby distinguished from the body across an internal

boundary.

On the mid-coronal plane a segmentation into the

body and cover is defined by specification of an inter-
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nal partition line, as shown in figure 4. This partition

line is swept along an arc in the transverse plane to ob-

tain the interface between the cover and body regions.

The radius of the arc isR and the distance of the center

of the arc from the VF axis isC = R− H. In the ab-

sence of subject-specific histological data,R is retained

as a free model parameter. Its numerical value is chosen

such that the thickness of the cover at all coronal sec-

tions remains∼ O(t). The tissue properties of the two

layers are identified by subscriptsb andc referring to

body and cover respectively. The dotted line shows the

body-cover partition interface.

Specific model parameters

In Šidlof et al.10 a casting method was used to obtain

the geometry of the VFs of a 72-year old female subject.

Eight coronal sections (M = 8), each 1 mm apart, were

considered (see figure 5). The data10 did not include

information on the cricoid cartilage and joint locations.

Therefore the mid-saggital plane is defined such that the

minimum distance between this plane and the left and

right profile on each coronal plane is on average zero.

This model is referred to as model SS.

To create the models R0, R1 and R2, the mid-coronal

section of model SS is required. Image-slices in fig-

ure 5 are taken at a series of equispaced locations along

the anterior-posterior direction. Therefore, slices at

z = 7.5 mm andz = 8.5 mm (̌Sidlof et al.10 coordi-

nates) are obvious choices for the mid-coronal section.

The plane with indexz= 7.5 mm (Šidlof et al.10 coor-

dinates) was chosen as the mid-coronal plane. The mod-

els SS, R0, R1 and R2 are meshed using continuum 3D

4-noded tetrahedral elements (C3D4) by a free mesh-

generation technique. The global element edge length

Lelem is set to 0.300 mm, with the curvature-control and

size factors set to 0.030 and 0.100 respectively. Interior

elements are allowed to increase in size. For the M5R1

model,Lelem= 0.500 mm, and the curvature-control and

size factors are same as for the subject-specific mod-

els. It is meshed with 3D 8-noded quadrilateral elements

(C3D8). The sweep technique with the advancing-front

algorithm is used to generate the mesh. The number of

elements generated depends on the length of the model

considered. Table 2 summarizes the model data. Note

that the range of vertical axis in figure 5 is≈ 15 mm. In

order to accommodate the images and smoothly merge

them into a cylindrical tracheal wall of diameterH, the

numerical value ofH is specified to be somewhat larger.

The image slices corresponding to anterior and poste-

rior extremeties in figure 5 show the left and right VFs

to be separate by& 1 mm. Thereby, the VFs needed to

be extended byw & 1 mm in both anterior and poste-

rior directions to merge them smoothly without creating

sharp corners. The choice of cover thicknesst ∼ 2 mm

(figure 3 b) agrees with earlier measurements. For ex-

ample, Hirano et al.40 observed that the epithelial layer,

and the superficial and intermediate layers of the lamina

propria, which together constitute the cover, are 1.0–

1.5 mm thick. The radiusRof the arc defining the body-

cover partitioning ensures that the cover thickness varies

between 0.985 mm and 2.00 mm at any location. With

respect to the average value of theH parameter, each

geometric parameter deviates from its mean by no more

than 7.6%. These small differences arise out of human

intervention required in creating the models.

Tissue biomechanical properties

The mass densityρb,c = 1070 kg/m3 of the body and

cover regions is taken to be close to the density of wa-

ter, the major constituent of biological tissue. Similar
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values are reported in Titze41 for the thyro-arytenoid

muscle which makes up the bulk of the body. In a

linear perturbation analysis, as conducted in this pa-

per, strains are assumed to be infinitesimal. Under

this assumption, considering non-linear stress-strain re-

sponse for the tissue does not lead to any further in-

sight. The cover region is postulated to be transversely

anisotropic3, with stiffness inap-direction being higher

than in the isotropic coronal plane perpendicular to it.

In the following, subscriptsml (medial–lateral) andis

identify two mutually perpendicular directions in the

coronal plane. We use a consistent micromechanical

model (Daniel and Ishai42 , ch. 3) to obtain the elastic

constants of a transversely isotropic elastic constitutive

law for the cover region. To this effect, the cover re-

gion is assumed to comprise two constituents: the load-

bearing collagen fibers (oriented along theap-direction)

and the underlying extra cellular matrix. From measure-

ments on excised larynges4 we estimateEap ∼ 6 kPa.

The matrix is considered to be close to incompressible,

νm = 0.490. The Poisson’s ratio of the fiber is con-

sidered to beν f = 0.300 and its volume fraction to be

30%. To complete the model, we need to specify the

elastic moduli of the fibers and the matrix components,

i.e. E f andEm respectively. Let us define the ratio be-

tween the elastic moduli in theap-direction to that in

any direction in the coronal plane (for e.g.ml here)

χ ≡ Eap/Eml, (8)

as a measure of the degree of anisotropy in the material.

The two parametersE f andEm can be uniquely speci-

fied to obtain target values ofχ andEc,ap. Table 3 gives

elastic constants obtained for the cover derived from the

micromechanical model for the four values ofχ = 1.00

(isotropic), 2.00, 5.00 and 10.0. Kelleher et al.3 found

that the ligament can have anisotropy as high asχ ∼ 50.

Therefore the values we consider here are well within

the expected range.

In Oestreicher43 it was argued that soft biological

tissue like the VFs are typically almost incompressible,

because they comprise mostly of water, which is incom-

pressible under standard temperature and pressure con-

ditions. Thereby we consider the body to be close to

incompressible and fixνb = 0.450. To simulate stiff-

ening of the body region, we consider various values of

h = Eb/Ec,ap, by increasingEb and keepingEc,ap fixed.

The following cases are considered for the subject-

specific models presented in the preceeding section.

Firstly, we simulate a homogeneous isotropic VF by set-

ting Eb = Ec,ap = 6.00 kPa andχ = 1.00. The effect

of muscle activation is analyzed by increasingEb, such

thath = 2.00, 4.00 and 8.00. Previous studies44,45report

that stresses in an active muscle can be an order of mag-

nitude higher than passive muscle. Therefore the values

of h considered here should be taken to be indicative.

The effect of anisotropy is investigated withh = 1.00

and setting cover properties from table 3 corresponding

to χ = 2.00, 5.00 and 10.0. To investigate the combined

effect of muscular activation and cover anisotropy, we

consider the following scenarios. On one hand, we fix

h = 4.00 (Eb = 24.0 kPa) andEc,ap = 6.00 kPa and

vary the level of anisotropy in the cover (χ = 2.00, 5.00

and 10.0). On the other hand, we fixχ = 5.00 and

Ec,ap = 6.00 kPa, and vary the level of muscle activa-

tion by increasingEb such thath = 2.00, 4.00 and 8.00.

The case (h = 4.00,χ = 5.00) is encountered along both

lines of variation.

8



EIGENFREQUENCY ANALYSIS

We undertake an eigenfrequency analysis to investigate

the influence of VF geometry and biomechanical prop-

erties on the frequency response of the VFs. Bound-

ary conditions imposed on the FE models are as fol-

lows. The tracheal walls are much stiffer compared to

the VFs, and are assumed to be rigid in this study. To

simulate this, we constrain all degrees of freedom of

the outer surface of subject-specific models. For model

M5R1, this means that theap end-surfaces and the lat-

eral surface are constrained. Also, for this model, con-

sidering only one fold suffices because the two folds

are disjoint and identical to each other. Following the

natural frequency extraction procedure implemented in

Abaqus/Standard, an eigenfrequency analysis of an FE

model is formulated as solving the following problem

(

−ω2
M

MN + KMN
)

φN = 0, (9)

whereM is the mass matrix,K is the stiffness matrix,ω

is the desired eigenfrequency andφn is the correspond-

ing eigenvector (mode of vibration). Here superscripts

M andN denote the degrees of freedom. The Lanczos

algorithm is used to solve the problem. We consider

the frequencies for the first three natural modes for the

models.

RESULTS

We initially consider the models SS, R0, R1 and R3 with

isotropic, homogeneous tissue properties, i.e. with no

distinction between body and cover. Table 4 shows the

first six eigenfrequencies for each of these models. We

group the frequency values pairwise, noting their prox-

imity, and calculate averages of paired eigenfrequencies

as the effective first, second and third eigenfrequencies.

Separations within pairs of eigenfrequencies are due to

asymmetries in geometry and mesh with regards to the

left and right VF. In the following we refer to the mean

of each pair of frequencies as the value corresponding

to each mode of vibration, and do not present individual

frequency values within each pair.

A mesh independence study was conducted by con-

sidering meshes withLelem = 0.300 mm, 0.500 mm,

1.00 mm and 2.00 mm for models SS and R0. The

representative cases (h = 1.00, χ = 1.00), (h = 8.00,

χ = 5.00) and (h = 4.00, χ = 10.0) were consid-

ered. The percentage errors in the first three frequen-

cies are shown in figure 7 in dependence ofLelem. Er-

rors are within 6.21% when theLelem is increased from

0.300 mm to 0.500 mm. Therefore, frequencies for

models SS, R0, R1 and R2 quoted in this paper cor-

respond to theLelem = 0.300 mm mesh, and are con-

sidered to be accurate to within 6.21%. For an M5R1

model withL = 18.0 mm, a similar mesh dependence

analysis shows that results are already accurate to within

1.88% when using anLelem = 0.500 mm mesh. There-

fore, frequencies for models M5 and M5R1 quoted in

this paper correspond to theLelem = 0.500 mm mesh,

and are considered to be accurate to within 1.88%.

Figure 8 shows the effect of heterogeneity on the nat-

ural frequency response, with the cover being isotropic,

for models SS, R0, R1 and R2, as well as for M5R1

models of different lengths. For the range of varia-

tion in heterogeneity considered, modal frequencies can

change by as much as 50% for all models. However,

the frequencies of models SS and R0 are different from

each other by at most 2%. This shows that the abstrac-

tion is robust toapvariation of geometry. Compared to

the baseline model SS, model R1 seems to do better than

R2, suggesting an influence of subglottal VF geometry.

The former differs from the baseline by at most 10%,
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whereas the latter is different by as much as 50% and

bearing almost no resemblance to the baseline. Also,

note that theap-extent of the glottal orifice (H − 2w) of

the subject-specific models (table 2) is on the order of

13.0(±1.20) mm. On the other hand, natural frequencies

of the M5R1 model depend on its lengthL. We observe

that the length of the M5R1model required to match the

modal response increases as the degree of heterogeneity

increases, and this effect is strongest in the case of the

first mode.

Figure 8 also compares the frequency, for the models

with subject-specific geometry SS and the M5R1 mod-

els of different lengths, in dependence of degree of cover

anisotropy, with the ratioh = Eb/Ec,ap = 1.00. Here

too, the effect of variation in tissue properties, within

each subject-specific model, is seen to be significant.

The differences in geometry between the models with

subject-specific geometry SS and the other models in-

creases from R0 to R2. The percentage differences are

of the same order as in the case of heterogeneity. An-

other similarity is that increasingly longer M5R1 mod-

els are required to match the modal response of subject-

specific models at higher anisotropy levels, and this ef-

fect is predominant in the first mode.

Figure 9 compares the frequency for the subject-

specific models in dependence of degree of cover

anisotropy in the presence of a constant degree of het-

erogeneityh = 4.00 on one hand, and the frequency

for the subject-specific models in dependence of de-

gree of heterogeneity in the presence of a constant de-

gree of cover anisotropyχ = 5.00 on the other. In-

creasing muscular activation, or in our model, increas-

ing heterogeneity leads to an increase in the predicted

fundamental frequency. This is expected because in-

crease in heterogeneity corresponds to increased stiff-

ness in the body region. On the other hand increase in

anisotropy decreases the frequency, owing to increase in

compliance in the cover. Simultaneous increase in val-

ues of both parameters is thereby counteractive. We ob-

serve that the combined effect, however, works to a dif-

ferent degree on the subject-specific models compared

to the M5R1 model. In both cases, the curves of fre-

quency variation for the subject-specific models devi-

ate from isolines of M5R1 models of constant lengths

much faster than when cover anisotropy and hetero-

geneity were considered in isolation. In particular, for

the first mode, the effect of varying heterogeneity, while

keeping cover anisotropy fixed, is found to be larger

than the reverse case (fixing heterogeneity and varying

anisotropy). The percentage differences between the SS

model and the other subject-specific models is of the

same order as before. In particular, R0 differs by less

than 2%, R1 by less than 10% and R2 by about 50%.

DISCUSSION

In this paper a framework to construct geometrical

models from subject-specific data was presented. It

was shown how geometrically abstracted models can

be created using this framework in an automated pro-

cess with the underlying mathematical equations pre-

sented in this paper. Human intervention might be re-

quired in successfully implementing the procedure, es-

pecially to overcome lack of information from image

slices. The image-slice data used in this paper was ob-

tained from a casting method used to determine subject-

specific glottal geometry. This data is similar in resolu-

tion to that obtainable through modest MRI capabilities

available currently that can achieve a resolution of the

order of 1 mm46,35,31. The geometric models were fur-

ther enriched to incorporate VF histology. Consistent
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micromechanical laws were used to define tissue prop-

erties. Below we discuss the results obtained above in

the context of creating a canonical model that satisfac-

torily resembles the response of the real VF. Therefore

all comparisons are made with the the geometrically ac-

curate model SS, and deviations from it are interpreted

as degradation in performance and accuracy.

Irreconciliability of the M5 model

This paper indicates that the widely used M5 geometry

is not an appropriate choice for a canonical model in

continuum analysis. There are two possible reasons for

this: difference in sub-glottal geometry and quasi-2D

(extruded) geometry. The first reason is supported by

our observation that the models R0 and R1 performed

better than model R2. To investigate the validity of the

second reason, a quasi-2D model M5R1 with a cross-

section similar to the mid-coronal section of R1 was

created. It was expected to perform better than a quasi-

2D model with a R2/M5-like cross section. However,

there was a marked increase in percentage error in this

model compared to R1 in all cases. The M5R1 model

had a satisfactorily accurate modal response only for the

homogeneous isotropic VF case. As either heterogene-

ity and cover anisotropy approach realistic levels, the

length of an M5R1 and theap-extent of the geomet-

rically accurate model of identical modal response es-

sentially diverge. The divergence is exacerbated when

heterogeneity and anisotropy are combined. Thereby,

we expect quasi-2D models based on M5 geometry to

be strongly disadvantageous for modeling. The situa-

tion is irreconciliable because VFs are excited through

a fluid-dynamic loading by the glottal air flow. If an

M5R1 model is constructed to have an identical modal

response as a geometrically accurate model, the fluid-

dynamic loading will have a characteristic length scale

different from reality.

An alternate canonical model

In this paper various alternate canonical models were

analyzed for continuum analysis, and our results help

to rationalize a choice. The geometrically abstracted

model R0 was constructed from only the mid-coronal

section image and two other gross dimensions:ap-

extent of glottal orifice,H − 2w, and outer tracheal wall

diameterH. The mid-coronal image automatically pro-

vides the dimensiondg. The modal response of this

model was found to be within 98% accuracy. Further-

more, when coupled to glottal air-flow models, the char-

acteristic length scales of the model and flow remain

identical. This model geometry is also advantageous

from the point of view of data acquisition required to

construct the model. By eliminating the need to obtain

multiple MRI slices, and consequently a higher reso-

lution and a high intensity magnetic field, a significant

simplification is achieved. The procedure presented in

this paper to construct the model R0 can therefore be

used to develop subject-specific models that have faith-

ful mechanical response.

We do not foresee much advantage in choosing model

R1 over R0. The gross dimensionsH − 2w, H, dg and

the thickness of the VF (inferior-superior dimension)

are required to create this model. The first three can be

determined from a superior view, as with a clinical in-

strument like laryngoscope. However we are not aware

of any technique that can determine the depthin-vivo

without employing an MRI or other imaging paradigm.

Moreover, the accuracy drops to about 90% with this

model. Use of this model needs to be justified with re-

spect to the research context. On the other hand, use of
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the model R2 is strongly discouraged. Even though this

model requires data that can be acquired through a su-

perior view only, obviating an imaging procedure, it is

seriously disadvantaged due to it inaccuracy.

Models R0, R1 and R2 have a unique advantage over

the quasi-2D model M5R1, in that it is perhaps possible

to recalibrate the eigenmode results obtained from these

models so that they match model SS. This is because

the error in these models, however large, is consistently

of positive sign. However the model M5R1, variously

overpredicts or underpredicts the modal response, de-

pending on tissue properties and the mode in considera-

tion. Possible reasons are differences in effective bound-

ary conditions at the anterior and posterior ends, and the

difference inapdepth. In the quasi-2D model, the ante-

rior and posterior ends are held rigid and the VF vibrates

like a beam with clamped conditions on both sides.

In the subject-specific models however, the support

is somewhat compliant in that there is a volume of

solid that is free to deform. Furthermore, the material

properties of this region are those of the cover and this

might possibly make the support condition further com-

pliant. To test this hypothesis, we created an M5R1

model of lengthL = 16.0 mm with body-cover parti-

tioning as described before. Additionally, all elements

lying within a width w′ = 1.50 mm of the anterior

and posterior ends were specified as having cover prop-

erties. The anisotropy and heterogeneity were set to

χ = 5.00 andh = 4.00 respectively. This model was

expected to isolate the effects of end-condition compli-

ance arising due to geometry only, and suppress those

due to material properties. The effective length of this

model L′ = L − 2w′ = 13.0 mm is close to that

of subject-specific models (table 2, column 6). We

compare this model to subject-specific models in fig-

ure 9. Indeed, this model performs better that the orig-

inal M5R1 model with lengthL = 12.0 mm. However

there are two disadvantages. Firstly, there is no signif-

icant improvement over model R1, except in the third

mode. And secondly, the sense of deviation depends on

the mode: positive and large for mode 1, and decreases

thereon to become negative for mode 3. Therefore, we

conclude that the geometry of the subject-specific mod-

els, in particular their non-extruded construction, plays

a significant role in ensuring a uniform sense of devia-

tion, and thereby their potential to be calibrated.

Tissue properties and histology

Our work shows that the effort made in accurately de-

termining geometry must be seriously weighed in com-

parison to accurately determining the mechanical be-

haviour of the tissue. In this paper, the sensitivity of

modal response to tissue properties was found to be

significant even with a computational model adhering

closely to a subject’s VF geometry. The fidelity of such

a model’s modal response is therefore as ambiguous as

the ambiguity in the knowledge of the subject VF’s tis-

sue properties. Efforts need to be made to develop pro-

cedures that can reliably measure in-vivo tissue prop-

erties. Noninvasive methods (e.g., using sonography47)

to characterize the mechanical behavior are an attractive

choice. In the present study a constant cover thickness

was assumed and the sensitivity of modal response to

this parameter was not examined. This is due to the

fact that histology is currently unobtainable from MRI

data. In Herrera et al.48 ex-vivo ferret and canine laryn-

ges were examined under high-intensity magnetic field

(11.7 T) to establish that histological distinctions be-

tween lamina propria, muscle, epithelial tissue can be

achieved. We believe this is an important development,
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and our results clearly are in need of input from research

in this direction.

CONCLUSIONS

From the present study, four main conclusions can be

drawn. Specifically, these concern:

1. the geometry representation framework,

2. the proper construction and choice of a canonical

model,

3. the relevance of extruded geometry models, and

4. the role of tissue biomechanical properties.

The mathematical representation of the VF geometry

described herein is demonstrated to be versatile. This

representation technique naturally follows slice-by-slice

imaging methods; an example data-set available in liter-

ature was assimilated with minimal post-processing. It

allows typical geometric abstractions to be easily con-

ceptualized; a widely-used geometry specification was

completely described by the variables used in the repre-

sentation. Furthermore, the technique is readily imple-

mented using a scripting language (Python) to control

model construction steps within a commercial software

package (Abaqus/CAE). The tool presented in the paper

could be considered as a planning tool in clinical ap-

plications, for example, when modifications to VFs are

considered by phonosurgery procedures49,50, or when

tissue replacements are implanted51,52,53. The strength

of the method lies in its ability to significantly shorten

the distance between subject-specific geometry features

and modeling of VF dynamics.

Regarding the proper construction of a canonical

model, a succession of geometric abstractions were con-

structed that reduced a subject-specific geometry to a

widely-used extruded geometry specification available

in voice literature. The mechanical response of these

models – characterized by the first three eigenfrequen-

cies – was analysed in dependence of geometric abstrac-

tion, and in the presence of variation in tissue biome-

chanical properties. It was found that, except for the

naı̈ve biomechanical property consideration of isotropic

homogeneous VF tissue, geometric abstractions could

cause unrealistic deviations in model response, thereby

making the model irrelevant. Considerations of model

construction overhead and model accuracy were fac-

tored in to arrive at an optimal choice of the canonical

model.

In the extreme case of the extruded geometry model,

a calibration exercise remained inconclusive because

the deviations in model response were inconsistent in

their dependence on tissue property variation. Care

was excercised to demonstrate that geometric abstrac-

tion was the source this discrepancy, which remained

even after providing for a correction due to possible dif-

ferences in tissue biomechanical properties at support

locations. This underlined the difficulty in using this

geometry to construct models with realistic response

characteristics. Contact between VFs is another aspect

of VF dynamics which is of considerable interest, and

presents a further complication in modeling. While not

addressed in the present study, the present results in-

dicate a strong dependence of the VF behavior on ge-

ometry, thus contact is expected to further complicate

the behavior. Thereby studies on modeling contact us-

ing extruded geometries should be carefully reviewed.

Such investigations are under consideration.

The present study also shed light on aspects of nu-

merical modeling that deserve focus. Although the ca-

pability of extracting geometric detailin vivo has re-

alised significant development recently, and continues
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to be advanced, the present study advocates a strong

focus on research towards determination of tissue me-

chanical propertiesin vivo. It was demonstrated that

even for moderately abstracted geometries, correcting

for model response deviation is challenging when tissue

properties are not known with sufficient accuracy.

ACKNOWLEDGEMENT

The authors wish to gratefully acknowledge the support

provided by NIDCD Grant 5RA1DC008290-04.

References

1. Zheng X, Bielamowicz S, Luo H, Mittal R. A computa-

tional study of the effect of false vocal folds on glottal flow

and vocal fold vibration during phonation.Ann Biomed Eng.

2009;37(3):625–642.

2. Zhang Z. Characteristics of phonation onset in a two-layer vocal

fold model.J Acoust Soc Am. 2009;125(2):1091–1102.

3. Kelleher JE, Zhang K, Siegmund T, Chan RW. Spatially varying

properties of the vocal ligament contribute to its eigenfrequency

response.J Mech Behav Biomed. 2010;3:600–609.

4. Zhang K, Siegmund T, Chan RW. Modeling of the transient re-

sponses of the vocal fold lamina propria.J Mech Behav Biomed.

2009;2(1):93–104.

5. Kelleher JE, Siegmund T, Chan RW, Henslee EA. Optical

measurements of vocal fold tensile properties: Implications for

phonatory mechanics.J Biomech. 2011;44(9):1729–1734.

6. Chen LJ. Investigations of mechanical stresses within human

vocal folds during phonation. Ph.D. thesis; Purdue University;

2009.

7. Tao C, Jiang JJ, Zhang Y. Simulation of vocal fold impact pres-

sures with a self-oscillating finite-element model.J Acoust Soc

Am. 2006;119(6):3987–3994.

8. Hunter E, Titze I, Alipour F. A three-dimensional model

of vocal fold abduction/adduction. J Acoust Soc Am.

2004;115(4):1747–1759.

9. Spencer M, Mongeau L, Siegmund T. Experimental study of the

self-oscillation of a model larynx by digital image correlation. J

Acoust Soc Am. 2008;123(2):1089–1103.
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Variables (Roman) Variables (Greek)

a: hyperellipse semi-minor axis ∂C: shell

b: hyperellipse semi-minor axis φ: eigenvector

B: M5 model parameter ν: Poisson’s ratio

C: distance from center ρ: density

dg: glottal gap ψ: glottal angle

D: depth ω: eigenfrequency

E: elastic modulus χ: degree of anisotropy

f j : frequency ofj-th mode

G: bulk modulus Abbreviations

h: heterogeneity parameter 2D: two-dimensional

H: tracheal wall diameter 3D: three-dimensional

k: hyperellipse curvature parameter ap: anterior–posterior

L: length CAD: computer-aided design

L′: effective length CC: cricoid cartilage

Lelem: global element edge length CT: computed tomography

M: number of planes FE: finite element

N: number of closed curves is: inferior–superior

P: point ml: medial–lateral

P̄: point MR(I): magnetic resonance (imaging)

Q1, Q2, Q3, Q4, Q5: M5 model parameters VF: vocal fold

R: radius

R0, Rψ, RL, R40: M5 model parameters Superscripts

S j : curve j i : index

t: cover thickness M: dimension

T: M5 model parameter N: dimension

V: volume

w: width at ant-pos ends Subscripts

w′: length reduction at ends ap: anterior–posterior

x: cartesian coordinate of pointP b: body

x̄: cartesian coordinate of point̄P c: cover

Table 1: Glossary
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Variables (Roman) Subscripts (contd.)

xmin, xmax: extrema f : fiber

y: cartesian coordinate of pointP is: inferior–superior

ȳ: cartesian coordinate of point̄P j: index

z: cartesian coordinate of pointP L: left

z̄: cartesian coordinate of point̄P m: matrix

K: stiffness matrix ml: medial–lateral

M: mass matrix R: right

M5, M5R1, R0, R1, R2, SS: model names

G: surface

T : surface

Table 1: Glossary (contd.)

Model H [mm] w [mm] R [mm] C [mm] H − 2w [mm] # elements

SS 18.0 3.10 35.5 17.5 11.9 321 368

R0 17.4 1.60 35.2 17.8 14.2 215 994

R1 15.5 1.40 35.4 19.9 12.7 124 478

R2 15.5 1.40 35.4 19.9 12.7 173 635

〈q〉 16.6 1.88 35.4 18.8 12.9 –
max[q− 〈q〉]
〈H〉

– 0.0735 0.0120 0.0783 0.0783 –

Table 2: Geometry parameter values and total number of elements for the models considered. Also indicated are deviations in geometry parameters

across models. For a parameterq, its average value is denoted by〈q〉.

Case I Case II Case III Case IV

χ 1.00 2.00 5.00 10.0

Ec,ap [kPa] 6.00 6.00 6.00 6.00

Ec,ml [kPa] 6.00 3.00 1.20 0.600

Gc,ml−is [kPa] 2.07 2.23 2.28 2.29

Gc,ml−ap [kPa] 2.07 1.02 0.404 0.202

νc,ml−is 0.450 0.740 0.886 0.933

νc,ml−ap 0.450 0.217 0.0866 0.0433

Table 3: Elastic constants of body and cover for various level of anisotropy.
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Model f1 (Hz) f2 (Hz) f3 (Hz)

SS 71.5 (71.5, 71.5) 97.0 (96.1, 97.9) 105 (104, 106)

R0 70.7 (70.6, 70.7) 95.4 (95.3, 95.6) 104 (103, 105)

R1 75.7 (75.7, 75.7) 107 (106, 107) 112 (111, 113)

R2 73.0 (72.9, 73.0) 105 (104, 105) 114 (112, 115)

Table 4: Predicted eigenfrequencies for homogeneous isotropic vocal fold models.

19



Figure 1: Schematic of the vocal folds, underlying muscles and sur-

rounding hard tissues as seen at a coronal section (adapted from

Gray 54 ). White dashed lines depict the boundary of the system con-

sidered in this paper.

Start

?
Import image-slice data

points into ABAQUS
?

Set j = 1

?
Pass smooth closed spline, in order,

through the points:

{P(1)
j,L, P(2)

j,L, P(3)
j,L, . . . , P(M)

j,L , P(M)
j,R ,

P(M−1)
j,R , . . . , P(1)

j,R, P(1)
j,L} → curveS j

?

Is j ≤ N?

�

?

Loft through curves, in order,
{S0, S1, S2, . . . ,SN+1} → surfaceG

?
Loft through curvesS1 andSN

→ surfaceT

?
Create shell∂C joiningG andT

?
Convert shell∂C into solidV

Stop

?

Figure 2: Flowchart for the process of creating 3D continuummodels

of vocal fold using image-slice data.
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SS,R0 R1,M5R1 R2,M5

dg/2

t

H/2

D/2(b)

Figure 3: (a) The M5 profile, with permission to reproduce

from Scherer et al.18 (b) Comparision of the M5 profile,ψ = 0◦,

and various mid-coronal sections used in this study. The dash-dotted

line in (b) is the mid-saggital plane, at distancesdg/2 andH/2 from

the medial edge of the mid-coronal section and from the outertracheal

wall respectively. The dotted curve is the interface between body and

cover.
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Figure 4: Partitioning the vocal fold volume into body and cover re-

gions by sweeping a partition line along an arc.
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Figure 5: Image-slices for the vocal folds of 72-year old female subject (with permission from̌Sidlof et al.10 ).
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Figure 6: The two parts of model SS corresponding to slice made at

z= 6.5 mm in figure 5 (top row, third from left). The body (dark) and

cover (light) regions are colored differently.
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Figure 7: Mesh independence results for models SS and R0. Thefirst

three frequencies are considered. Percentage errors associated with

meshes of global element edge lengthLelem = 2.0 mm, 1.0 mm and

0.5 mm, with respect to aLelem = 0.3 mm mesh are given for cases

(h = 1.0, χ = 1.0), (h = 8.0, χ = 5.0) and (h = 4.0, χ = 10.0).
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Figure 8: Predicted eigenfrequencies in dependence of heterogeneity (top) and anisotropy (bottom), considered in theabsence of one another. SS,

solid line without symbol; R0, squares (�); R1, circles (◦); R2, crosses (×). Dashed lines correspond to M5R1 model. Numbers adjacent to the

dashed lines indicate model length in millimeters.
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Figure 9: Predicted eigenfrequencies in dependence of heterogeneity (top) and anisotropy (bottom), considered in thepresence of one another. SS,

solid line without symbol; R0, squares (�); R1, circles (◦); R2, crosses (×). Dashed lines correspond to M5R1 model. Numbers adjacent to the

dashed lines indicate model length in millimeters. The plussymbol (+) corresponds to an M5R1 model withap-ends constituting of cover material.
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