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Abstract

Introduction Individual case reports are the main asset in pharmacovigilance signal management. Signal validation is the
first stage after signal detection and aims to determine if there is sufficient evidence to justify further assessment. Throughout
signal management, a prioritization of signals is continually made. Routinely collected health data can provide relevant con-
textual information but are primarily used at a later stage in pharmacoepidemiological studies to assess communicated signals.
Objective The aim of this study was to examine the feasibility and utility of analysing routine health data from a multinational
distributed network to support signal validation and prioritization and to reflect on key user requirements for these analyses
to become an integral part of this process.

Methods Statistical signal detection was performed in VigiBase, the WHO global database of individual case safety reports,
targeting generic manufacturer drugs and 16 prespecified adverse events. During a 5-day study-a-thon, signal validation and
prioritization were performed using information from VigiBase, regulatory documents and the scientific literature alongside
descriptive analyses of routine health data from 10 partners of the European Health Data and Evidence Network (EHDEN).
Databases included in the study were from the UK, Spain, Norway, the Netherlands and Serbia, capturing records from
primary care and/or hospitals.

Results Ninety-five statistical signals were subjected to signal validation, of which eight were considered for descriptive
analyses in the routine health data. Design, execution and interpretation of results from these analyses took up to a few hours
for each signal (of which 15-60 minutes were for execution) and informed decisions for five out of eight signals. The impact
of insights from the routine health data varied and included possible alternative explanations, potential public health and
clinical impact and feasibility of follow-up pharmacoepidemiological studies. Three signals were selected for signal assess-
ment, two of these decisions were supported by insights from the routine health data. Standardization of analytical code,
availability of adverse event phenotypes including bridges between different source vocabularies, and governance around
the access and use of routine health data were identified as important aspects for future development.

Conclusions Analyses of routine health data from a distributed network to support signal validation and prioritization are
feasible in the given time limits and can inform decision making. The cost—benefit of integrating these analyses at this stage
of signal management requires further research.

1 Introduction

The detection, analysis and communication of signals that
indicate a possible causal relationship between a medicine
and an adverse event are key pharmacovigilance priorities.
Signal management relies extensively on adverse event
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reports submitted by health care professionals, patients and
pharmaceutical manufacturers [1, 2]. Their analysis informs
most regulatory decisions related to safety signals for mar-
keted medicinal products [3, 4]. Signal detection is the first
stage of signal management and can be based on case-by-
case human review of incoming adverse event reports and/or
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Key Points

Utilizing routinely collected health data to support the
validation and prioritization of pharmacovigilance sig-
nals is largely unexplored.

The results of this study indicate that descriptive analy-
ses of routine health data from a distributed network can
provide useful insights in a timely manner to support the
validation and prioritization of signals, but the impact on
decision making varies by signal.

The identified key user requirements highlight areas of
further development to fully harness the potential of
these data in signal management.

rely on statistical signal detection of disproportional report-
ing patterns, to identify case series for expert review. After
a signal has been detected, the case series is assessed by
pharmacovigilance specialists. In the European Union (EU),
this first stage of analysis is referred to as signal validation
and its aim is to determine if there is sufficient evidence
of a possible new causal association or a new aspect of a
known causal association to justify further assessment [5].
Signals passing this stage are subjected to signal assessment
where more extensive analyses of individual case reports
are performed, and other data sources may be consulted.
Throughout signal management, a prioritization of signals
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is continually made, accounting for strength of evidence and
clinical relevance [5], which reflects both the potential pub-
lic health impact [6] and impact on vulnerable groups and
patients at risk [7] (see also Fig. 1 for an overview of the
different stages of the signal management process).
Adverse event reports have well-known strengths and limi-
tations [8, 9]. Among their strengths are that they cover all
types of medicinal products and adverse events, and that they
capture data with the specific aim of supporting individual
case causality assessment. Among their limitations are the var-
iable quality of information on individual reports, (selective)
under-reporting of adverse events and absence of informa-
tion on medicinal product usage in the population. Moreover,
duplicate reports exist and reasons for reporting can differ by
reporter qualification, setting and awareness. Altogether, these
limitations can complicate the assessment of possible bias and
confounding as well as the clinical relevance of a signal.
Alternative methods have been proposed to provide con-
textual information that individual case reports lack such
as cohort event monitoring and other targeted efforts [10].
Whilst these methods can facilitate the identification and
characterization of specific signals, their reliance on pri-
mary data collection make them less suited for identifying
or assessing pharmacovigilance signals at scale. Routinely
collected health data are observational data gathered over
time from a population as part of routine healthcare delivery
and/or administrative processes and are thus better suited for
broader surveillance. Routine health data are traditionally

i i
o N

N

Fig. 1 Overview of the first stages of a signal management process
as employed by the Uppsala Monitoring Centre. During signal detec-
tion, drug—event combinations captured by individual case reports are
selected for expert review based on case-by-case review and/or sta-
tistical algorithms. Next, top-ranked signals undergo initial review
or signal validation, during which regulatory documents, aggregate
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statistics of case series and the literature are screened to determine
if further investigation is required. Signals passing this stage are sub-
jected to signal assessment which involves a more comprehensive
analysis of individual case reports, in-depth literature review and pos-
sible consultation of other data sources to determine whether commu-
nication is warranted
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used at later stages of signal management, to assess signals
in pharmacoepidemiological studies focusing on characteri-
zation and causal effect estimation but can also be of value
earlier in the process. For example, several international
initiatives have explored the use of routine health data for
signal detection including the Vaccine Safety Datalink [11],
EU-ADR [12-14], IMI PROTECT [15], OMOP [16, 17] and
the FDA’s Sentinel Initiative [18]. A recent review describes
several other studies [19]. There have also been efforts to
shorten the time required for follow-up pharmacoepidemio-
logical studies, through so-called rapid-cycle assessments
[11, 20-22]. In contrast, few studies [15, 23-25] have inves-
tigated the use of routine health data to validate and prior-
itize detected signals before assessment, all of which were
based on single databases.

The European Health Data and Evidence Network (EHDEN)
[26] is a federated network of data partners aimed at generat-
ing evidence from routinely collected health data at scale to
advance medical research and patient care by harmonizing
observational health databases across Europe and developing
new research methodologies and analytical tools. Besides pro-
viding context for signal validation, a distributed data network
like EHDEN could inform the feasibility of follow-up pharma-
coepidemiological studies for further assessment.

The aim of this study was to examine the feasibility and
utility of analysing routine health data within EHDEN to
support signal validation and prioritization and to reflect on
key requirements for these data to become an integral part
of signal management.

2 Methods

A 5-day study-a-thon [27], an event aimed at generating
knowledge and evidence for the specific aim of this study,
was organized on September 5-9, 2022 and attended by 31
scientists from partners of the Innovative Medicines Initia-
tive (IMI) EHDEN consortium. Statistical signal detection
was performed in VigiBase [28].

As the consortium operates as a public—private partner-
ship, the scope of the study was limited to suspected drugs
with generic manufacturers (excluding vaccines and biologi-
cals) to avoid potential conflicts of interest. Moreover, to
prevent bias due to misclassification, only adverse events
with pre-specified definitions or phenotypes validated in
EHDEN were considered. In general, the use of phenotypes
instead of single diagnostic terms also improves the ability
to recognize relevant adverse events and thereby increase
statistical power of any analysis. A total of 16 adverse event
phenotypes developed by the Observational Health Data Sci-
ences and Informatics (OHDSI) network and validated by
the consortium for its research on COVID-19 vaccines [29,
30] met this criterion at the time of the study.

Signal validation and prioritization considered informa-
tion from VigiBase, regulatory documents and the scientific
literature alongside descriptive analyses of routine health
data from participating EHDEN data partners.

2.1 Study-a-thon Execution

Six pharmacovigilance specialists experienced in signal man-
agement (four pharmacists; two medical doctors) and four
data scientists from the Uppsala Monitoring Centre (UMC)
participated in the study. They worked in two signal validation
teams, analysing reports in VigiBase and reviewing regula-
tory information and scientific literature according to UMC's
routine signal validation and prioritization process.

Supporting these teams were four epidemiologists with
expertise in performing analyses across large database networks
using tools and packages developed by the OHDSI commu-
nity including ATLAS [31]. They translated questions raised
by the assessors during signal validation and prioritization into
descriptive analyses with scripts to be executed across data-
bases of participating data partners. All analyses were designed
centrally in the ATLAS user interface, and JSON specifications
were shared with the data partners for execution. Additionally,
ad-hoc custom R/SQL scripts were developed on site.

During the study-a-thon, representatives of participating
data partners were on call to run the analysis scripts in their
respective databases to help answer the questions. They also
provided interpretation and context for results based on their
expert knowledge of the source data. Relevant findings were
returned to the corresponding signal validation team (Fig. 2),
and together with insights from VigiBase, regulatory docu-
ments and the scientific literature, they informed decisions
about which signals to forward for assessment. These decisions
were made by the signal validation teams through consensus.

2.2 Data
2.2.1 VigiBase

Reports in VigiBase are shared by the 155 full member
countries in the WHO Programme for International Drug
Monitoring (February 2023) [32]. Medicinal products
(drugs) are coded using the WHODrug Global diction-
ary [33] and adverse events are coded using the Medical
Dictionary for Regulatory Activities (MedDRA®). The
MedDRA® terminology is the international medical ter-
minology developed under the auspices of the International
Council for Harmonisation of Technical Requirements for
Pharmaceuticals for Human Use (ICH). VigiBase held 32.0
million reports at the data lock point, 4 July, 2022 [29]. We
excluded reports with only vaccines (ATC = JO7) listed
as suspected medicinal products and reports identified as
suspected duplicates through the vigiMatch algorithm [34],
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resulting in a data set of 25.6 million reports (encompass-
ing 3.7 million drug—event combinations) on which statisti-
cal signal detection was performed (see Fig. 3).

2.2.2 Routinely Collected Health Data from EHDEN

In EDHEN, individual-level data are maintained by data part-
ners across Europe and mapped to a common standard, the
Observational Medical Outcomes Partnership Common Data
Model (OMOP-CDM). In this model, drugs are coded using
RxNorm Extension [35] and outcomes using SNOMED CT,
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enabling execution of standardized analysis scripts across
different databases. All 16 phenotypes used for the study
(Supplementary Table 1, see electronic supplementary mate-
rial [ESM]) were defined based on rule-based algorithms
including relevant diagnostic codes [29, 30] (see also [36] for
a detailed description of the definitions used). Mapped indi-
vidual-level data are stored locally at the data partner site and
only aggregate statistics are shared within the network. All
data partners in EHDEN were invited to the study-a-thon. In
total, 10 data partners accepted the invitation, a brief descrip-
tion of their databases is provided in Table 1.

ROUTINE HEALTH DATA
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Fig.2 Overall execution of the study-a-thon. Two signal validation
teams (blue) examined the available information from VigiBase and
other sources of information, resulting in questions that could poten-
tially be answered with descriptive analyses of routine health data.
Epidemiologists well versed in Observational Health Data Sciences

A\ Adis

Wyt I

and Informatics (OHDSI) analytical tools (red) translated those ques-
tions into scripts for execution across routine health databases of the
participating European Health Data and Evidence Network (EHDEN)
data partners (green)
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2.3 Statistical Signal Detection

Statistical signal detection in VigiBase was carried out
using vigiRank, a data-driven predictive model for emerg-
ing safety signals [37]. vigiRank combines disproportion-
ality analyses (using the information component [IC] as
measure of disproportionate reporting [38]) with predictors
related to the completeness, recency, geographic spread
and availability of case narratives in a logistic regression
model. Since vaccine reports were excluded prior to statis-
tical signal detection, masking of signals by these reports
(which make up a large proportion of VigiBase) was pre-
vented. For this study, we selected drug—event combina-
tions with a maximum vigiRank score related to a generic
drug and a MedDRA® Preferred Term (PT) mapped to
one of the 16 selected phenotypes. Drugs with generic
manufacturers were identified using publicly available
data [39-41] and drug names were mapped from WHOD-
rug Global to the RxNorm Extension vocabulary of the
OMOP-CDM. Drugs with no verbatim match in RxNorm
Extension were excluded. Mapping between each of the
16 phenotypes and MedDRA® PTs was based on expert
medical knowledge. Phenotypes correspond to multiple
MedDRA® PTs and the one-to-many mapping included less
specific terms to increase the sensitivity of statistical signal
detection (see Supplementary Table 2 in the ESM). During
the signal validation process, signals were discarded if they
contained a non-specific PT and were the sole term mapped
to a phenotype. This resulted in a set of 1175 statistical
signals related to 218 generic drugs and 72 MedDRA®
PTs (see Fig. 3), which were listed in random order for
analysis. During the study-a-thon, 95 statistical signals of
this list (covering 65 drugs and 28 MedDRA® PTs) could
be subjected to signal validation and prioritization.

2.4 Analysis of Case Series in VigiBase and Review
of Regulatory Information and the Scientific
Literature

The purpose of signal validation and prioritization is to
determine which statistical signals merit assessment. Since
we used a more inclusive approach for mapping phenotypes
to MedDRA® PTs, we had to determine during signal vali-
dation whether there was support for a signal in VigiBase
considering more specific PTs mapped to the phenotype (see
Supplementary Table 2 in the ESM). Signals were closed
upon initial inspection if:

i) at least one of the PTs mapped to a phenotype or the
phenotype itself was listed as an already known adverse
drug reaction in the European Summaries of Products
Characteristics or the US Food and Drug Administration
product labels, or had been discussed by the Pharma-

VigiBase
— 32.0 million reports
3.9 million drug-event combinations
(22538 drugs, 22 430 MedDRA PTs)

suspected duplicates (0.70 million reports)
vaccine reports (5.7 million reports)

Dataset subjected to statistical signal detection
25.6 million reports
— 3.7 million drug-event combinations
(22 336 drugs, 21 323 MedDRA PTs)

apply vigiRank

combinations with
max vigiRank score

Statistical signals
— 82 361 drug-event combinations
(1 824 drugs, 3 747 MedDRA PTs)

drugs non-generic (54 214)
drugs not mappable to RxNorm Extension (21 283)

MedDRA PTs not mapped to phenotypes (5 689)

Statistical signals with mapped drug and phenotype
— 1 175 drug-event combinations
(218 drugs, 72 MedDRA PTs)

random sample

Statistical signals for validation
— 95 drug-event combinations
(65 drugs, 28 MedDRA PTs)

known (66)
lacking clinical coherence
or consistency (21)

Statistical signals for validation in routine health data
—» 8 drug-event combinations
(7 drugs, 7 MedDRA PTs)

Fig.3 Flow chart presenting the flow of signals including those stud-
ied during the study-a-thon. Numbers of exclusions refer to the num-
ber of drug—event combinations, unless specified differently. Med-
DRA Medical Dictionary for Regulatory Activities, PTs preferred
terms

covigilance Risk Assessment Committee of the Euro-
pean Medicines Agency or included in Drug Safety
Communications or Potential Signals of Serious Risk
of the US Food and Drug Administration, and there was
no information in the VigiBase case series to suggest
new aspects of the association; or

ii) the case series in question lacked clinical coherence or
consistency (e.g., invalid case diagnosis, implausible
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time to onset or unclear clinical picture due to the PT
being unspecific and the sole term mapped to the phe-

notype).

For the other signals, the following aspects were taken
into consideration to determine whether a signal was eligible
for assessment: the number of reported cases and whether
this exceeded the number expected based on how com-
monly the drug and adverse event were reported overall;
the time interval between drug administration and adverse
event onset (time to onset); the course of the event when
the drug was stopped (so-called dechallenge) and possibly
re-administered (so-called rechallenge); the presence of a
dose-response relationship; consistency of reporting across
geographic regions; consistency of reporting for drugs
belonging to the same substance class; existence of a plau-
sible biological mechanism; existence of possible confound-
ing by the underlying disease and/or concomitant treatments;
coherence with other findings in published reports and the
scientific literature. In addition, we examined descriptive
characteristics of the case series and considered the pos-
sibility of comparing these against characteristics of other
case series in VigiBase to identify relevant key features [42].

2.5 Analyses of Routine Health Data

Analyses of the routine health data to support signal vali-
dation and prioritization were descriptive in nature, i.e.,
focusing on so-called characterizations. The purpose of
these analyses was not to assess causal associations directly,
but rather to provide contextual information to assist signal
assessors in their assessments of possible alternative expla-
nations and potential public health and clinical implications.
Analyses were also conducted to determine if follow-up
pharmacoepidemiological investigations would be feasible.
For signals that could not be assessed in VigiBase, these
could impact the decision to forward a signal to assessment.
For example, if a signal was difficult to assess because of
suspected confounding by the underlying disease and/or con-
comitant medication(s), the decision whether to forward the
signal for assessment was partly guided by the possibility
of assessing it further in a pharmacoepidemiological study.

A cohort design was used for all analyses and the fol-
lowing cohorts were identified as key for supporting signal
validation and prioritization:

e Drug cohort: A cohort of new users of the drug, indexed
on the drug start date. New use was defined as the first
time a subject had a drug record in the database after at
least 365 days of database observation.

e Adverse event cohort: A cohort of subjects with a new
diagnosis of the adverse event of interest, indexed on the
diagnosis date. Event-free windows (see Supplementary
Table 1 in the ESM) were used to distinguish new diag-
noses from repeated reporting of the same diagnosis in
the database.

e [ndication cohort: A cohort of subjects with the indica-
tion for drug use, indexed on the first diagnosis date of
the indication.

Besides the cohorts defined above, we also considered
the possibility of performing additional descriptive analy-
ses including any subject with at least 365 days of data-
base observation. All analyses were performed within each
individual database and when interpreting the results, data-
base-specific features were taken into consideration such as
setting (hospital vs community-based), database capture of
the drug, the adverse event, relevant covariates as well as
sample size.

The design of all descriptive analyses was tailored to
questions raised by assessors of the signal validation teams
and where analyses of routine health data were considered
of potential added value. Consequently, the analysis themes
targeted by the routine health data (possible alternative
explanations, potential public health and clinical impact and
feasibility of follow-up pharmacoepidemiological investiga-
tions) could vary per signal.

2.5.1 Assessment of Possible Alternative Explanations

Possible bias and confounding were examined by character-
izing new users of the drug (i.e., the drug cohort). To better
understand characteristics of drug exposure (i.e., indications
for treatment, concomitant treatments and other comorbid
diseases) and their sequence leading up to drug initiation,
descriptive summary statistics of relevant covariates in the
drug cohort were obtained before and at the drug start date.
Likewise, occurrence of the adverse event prior to or at drug
start was assessed. The look-back window for examining
the distribution of relevant covariates and the adverse event
before the index date was set to 365 days and where possible
further split into shorter time intervals. To evaluate potential
confounding, associations between characteristics of drug
exposure and the adverse event were explored. This was
done by comparing incidence rates of the adverse event in a
365-day risk window (N per 10,000 person-years) between
patients with certain characteristics of drug exposure (e.g.,
indications for treatment, concomitant treatments or other
comorbid diseases) and at-risk subjects in the general popu-
lation captured by the database. Results from this analysis
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were reviewed overall and in age and sex strata to account
for imbalances in demographic characteristics in this com-
parison as appropriate.

2.5.2 Assessment of Potential Public Health and Clinical
Impact

To better understand the potential public health and clinical
impact of a signal, estimates of drug usage (i.e., number
of new users of the drug (see also drug cohort definition
in Sect. 2.5) as well as the proportion of patients with a
specific indication receiving the drug) were obtained and
the incidence rate of the adverse event among new users
of the drug (N per 10,000 person-years) was estimated. To
estimate the incidence, the allowable gap between succes-
sive drug records for defining continuous exposure dur-
ing follow-up was tailored to the drug under investigation.
To better understand the seriousness of the adverse event,
hospitalization and death rates were computed in subjects
experiencing the adverse event and those with prior drug
exposure. The start date of follow-up for these analyses was
defined as the diagnosis date (see also adverse event cohort
definition in Sect. 2.5). Routine health data further enabled
the identification of potential vulnerable subgroups through
comparing descriptive characteristics of all new users of
the drug and those who also experienced the adverse event.
This comparison included descriptive summary statistics of
relevant covariates before and at the drug start date.

2.5.3 Feasibility of Follow-up Pharmacoepidemiological
Investigations

To assess the feasibility of pharmacoepidemiological follow-
up investigations, the number of new users of the drug was
obtained, either overall or for a specific indication. Similarly,
the number of patients with the adverse event was computed,
either overall or in a specific period after initiating treatment
with the drug. If case counts for a drug—event combination
were considered sufficient for further analysis, treatment
pathway analyses (using so-called sunburst plots [43, 44])
were performed to display the sequence of common treat-
ments for specific indications. These analyses were used to
suggest relevant comparator drugs for follow-up pharma-
coepidemiological studies, using active comparator designs.
Sunburst plots are doughnut-shaped graphs with stacked
layers, each representing different lines of treatment. The
inner circle represents the first treatment and subsequent
treatments are shown in the surrounding outer layers, with
each drug represented by its own colour. Treatment pathway
analyses were restricted to a set of drugs selected by the
clinical experts. All analyses relied on cohorts as defined in
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Sect. 2.5, and data available within the participating data-
bases. In addition, we also evaluated feasibility of follow-
up pharmacoepidemiological investigations considering data
availability in the entire EHDEN network.

3 Results
3.1 Overall Findings

Figure 3 presents the flow of signals during the study. Of the
95 statistical signals subjected to signal validation and pri-
oritization, 66 (70%) were identified as already labelled and
21 (22%) were discarded due to lack of clinical coherence
or consistency in the corresponding case series in VigiBase.
For eight signals (8%), routine health data were considered
during signal validation and prioritization. The eight signals
covered seven generic drugs from different therapeutic areas
including dementia, cancer and inflammatory bowel dis-
ease and adverse event PTs mapping to various phenotypes
including appendicitis, acute myocardial infarction, deep
vein thrombosis, pulmonary embolism, non-haemorrhagic
stroke, myocarditis/pericarditis and anaphylaxis. Table 2
presents a summary of the insights gained from the differ-
ent data sources for each of the eight signals and how these
influenced the decision whether to forward the signal for
assessment.

Design, execution and interpretation of results from
descriptive analyses of the routine health data took up to
a few hours for each signal, of which 15-60 minutes were
used for execution. Routine health data were interrogated for
all signals where it was considered except for the diphen-
hydramine—anaphylaxis signal as the temporal resolution
and capture of over-the-counter drugs in the data were
deemed insufficient to answer the query for this specific
signal. Descriptive analyses of routine health data informed
decision making for five out of the seven signals (mesala-
zine—pericarditis/myocarditis, rivastigmine—non-hemor-
rhagic stroke, dexamethasone—acute myocardial infarction,
dexamethasone—appendicitis and melphalan—deep vein
thrombosis/pulmonary embolism) and the process resulted
in three signals (mesalazine—pericarditis/myocarditis, riv-
astigmine—non-hemorrhagic stroke and sorafenib—deep vein
thrombosis) being forwarded for assessment. Further elabo-
rations on insights gained from the routine health data are
provided per signal in Sects. 3.2-3.4 grouped by analysis
theme (possible alternative explanations, potential public
health and clinical impact and feasibility of follow-up phar-
macoepidemiological investigations).
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3.2 Possible Alternative Explanations

Routine health data were considered to explore potential
alternative explanations in seven of the eight signals.

Descriptive analyses supported the validation of the
dexamethasone—acute myocardial infarction signal. The
small fraction of dexamethasone users with a history of
multiple myeloma highlighted possible bias in the reported
case series. Multiple myeloma (i.e., the most common
indication in the case series in VigiBase) was also identi-
fied as a potential confounder and this was evaluated fur-
ther in the routine health data by comparing the incidence
rate of acute myocardial infarction in multiple myeloma
patients with a cohort of at-risk subjects. The increased
rate of acute myocardial infarction among multiple mye-
loma patients strengthened the suspicion of confound-
ing by the underlying disease and/or its attributes (i.e.,
advanced age) and together with insights from VigiBase
(i.e., reporting pattern suggesting intensified monitoring
of selected patient groups) resulted in the signal being
closed. The same approach was used for addressing poten-
tial confounding by indication for the rivastigmine—non-
hemorrhagic stroke signal. Here, descriptive analyses
strengthened the suspicion of confounding by dementia.
However, other insights from VigiBase (higher reporting
rate of the adverse event for rivastigmine compared with
some other dementia drugs) as well as the possibility to
assess the signal in more detail in a follow-up pharma-
coepidemiological investigation resulted in it being for-
warded for assessment. Descriptive analyses also rein-
forced the suspicion of confounding by indication (i.e.,
multiple myeloma) for melphalan—deep vein thrombosis/
pulmonary embolism, but this insight was not instrumental
in the decision to close this signal (see details in Table 2).
Other insights from regulatory information (i.e., throm-
boembolic events listed in some labels) and anticipated
confounding by other commonly co-administered drugs
contributed to the signal not being prioritized for assess-
ment. More contextual information regarding the tempo-
ral relation of drug exposure and event occurrence was
requested for cyclophosphamide—appendicitis. Almost
all cases of this signal lacked narratives and had limited
time-to-onset information, and confounding by underlying
disease was considered as a possible alternative explana-
tion. None of the analysed databases, however, had suffi-
cient capture of appendicitis cases around the initiation of
cyclophosphamide treatment to inform signal validation.
In all other signals (dexamethasone—appendicitis, diphen-
hydramine—anaphylaxis, sorafenib—deep vein thrombosis),
attempts to explore possible alternative explanations were
unsuccessful because of limited data or insufficient data
capture.

3.3 Potential Public Health and Clinical Impact

Among the eight signals for which routine health data
were considered, the potential public health and clinical
impact was assessed in three. This involved assessment of
number of new users of the drug, and the incidence of the
adverse event among these subjects.

The mesalazine—myocarditis/pericarditis signal was
selected for signal assessment as review of the case series,
regulatory information and published case reports high-
lighted potential new aspects warranting further investiga-
tion. Mesalazine-induced myocarditis/pericarditis is listed
in the Summaries of Products Characteristics (SmPCs)
from the European Union [45] and labels from the United
States [46] but there are no population-level estimates of
the frequency and seriousness of these events in mesala-
zine users. SmPCs list the ADR as ‘rare’ (<1/1000) or
‘very rare’ (<1/10,000). In VigiBase, 597 myocarditis/
pericarditis cases were observed and 82% of these cases
were marked as serious, with narratives and published case
reports showing evidence of life-threatening episodes and
hospitalizations. In the routine health data, mesalazine was
the most common drug recorded in patients with inflam-
matory bowel disease. The incidence rate of myocardi-
tis/pericarditis among new users of mesalazine ranged
between 1 and 4 per 10,000 per year, indicating that the
ADR is rare. Data capture of hospitalization and death
records, however, was insufficient to characterize the seri-
ousness of myocarditis/pericarditis following mesalazine
use in the routine health data. Given the relatively large
number of patients exposed to the drug and the potential
seriousness of the adverse event, it was selected for signal
assessment.

Descriptive analyses of routine health data also supported
the closure of two signals (dexamethasone—acute myocar-
dial infarction and dexamethasone—appendicitis). Together
with evidence suggesting intensified monitoring for dexa-
methasone in selected patient groups, these signals received
lower priority because of the small group of patients consid-
ered to be at potential risk. In both combinations, multiple
myeloma (i.e., the most frequent indication reported among
these cases in VigiBase) represented only a small fraction
of all indications for dexamethasone use and only a limited
number of appendicitis cases was observed in the routine
health data.

3.4 Feasibility of Follow-up
Pharmacoepidemiological Investigations

For six of the eight signals, routine health data enabled

rapid analyses of feasibility for follow-up epidemiological
investigations.
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The selection of mesalazine—pericarditis/myocarditis
for assessment was supported by the observation that there
would be a sufficiently large number of incident pericardi-
tis/myocarditis cases among mesalazine users in a pharma-
coepidemiological analysis. Similar observations supported
the selection of rivastigmine—non-hemorrhagic stroke for
in-depth assessment. For sorafenib—deep vein thrombosis,
the small number of patients treated with sorafenib in the
databases analysed indicated that it could not be evaluated
further in these data. Whilst the decision to forward this
signal for assessment was not directly informed by the rou-
tine health data that were part of the study-a-thon, a follow-
up pharmacoepidemiological study was deemed feasible
considering the availability of cancer-specific data in the
larger data network. The very low numbers of multiple mye-
loma patients treated with dexamethasone across databases
included in this study indicated that assessment of acute
myocardial infarction and dexamethasone specific to multi-
ple myeloma patients would not be feasible in the larger data
network either. The same conclusion was drawn for appendi-
citis with dexamethasone in multiple myeloma patients, for
which there was even less data—reflecting the lower popu-
lation incidence of appendicitis compared with acute myo-
cardial infarction. For the cyclophosphamide—appendicitis
signal, the limited number of identified cases highlighted the
difficulty of assessing this signal further in a pharmacoepi-
demiological study.

For rivastigmine—non-hemorrhagic stroke, treatment
pathway analysis shown in Fig. 4 identified other first-line
treatments (galantamine, donepezil and memantine) that
could serve as active comparators for rivastigmine in a phar-
macoepidemiological study. It also showed the heterogeneity

B donepezil exposures

M rivastigmine exposures
B galantamine exposures
B memantine exposures

of treatment pathways reflecting differences in care setting
of databases and prescribing practices across countries; for
example, in the IPCI database, galantamine was the second
most common first-line treatment for dementia whereas in
CPRD Aurum, NHR and IMASIS, other drugs were more
commonly observed as first-line treatment. Treatment path-
way analyses were also instrumental for identifying the can-
didate active comparator (i.e., corticosteroids) for follow-up
pharmacoepidemiological analysis of the mesalazine—myo-
carditis/pericarditis signal.

4 Discussion

Analyses of routine health data to support signal valida-
tion and prioritization are feasible and can inform decision
making. The design and execution of descriptive analyses
across ten European databases were completed in a time
frame of hours for each drug—event combination. Of eight
signals where routine health data were considered for signal
validation, descriptive analyses of the data informed deci-
sions in five. Possible alternative explanations, potential
public health and clinical impact and feasibility of follow-
up pharmacoepidemiological investigations each impacted
these decisions. The signal validation process resulted in
three signals being selected for signal assessment; two of
these decisions were supported by insights from the routine
health data.

The impact of insights from the routine health data var-
ied between the signals. For example, the mesalazine—myo-
carditis/pericarditis signal would not have been selected

Fig.4 Treatment pathway analyses for patients with dementia in
different databases. From left to right: CPRD (Clinical Practice
Research Datalink) Aurum, NHR (Norwegian health registries),
IMASIS (Institut Municipal Assisténcia Sanitaria Information Sys-
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for signal assessment without the ability to analyse routine
health data at this stage, whereas the melphalan—deep vein
thrombosis/pulmonary embolism signal would have prob-
ably been closed either way. Clearly, insights from routine
health data will not resolve all uncertainties in causality
assessments, and insights derived from the case series,
routine health data and other sources of evidence must be
combined in a holistic assessment. For example, signal
assessors need to bear in mind that local safety concerns
from other parts of the world may not be reflected in a
European network of routine health data. Also, integrating
routine health data in signal validation not only requires
pharmacovigilance knowledge, but also clinical and epi-
demiological expertise, as well as a good understanding
of the statistical methods and data used for analyses [15].
Lastly, the cost—benefit of integrating routine health data
at this stage of signal management cannot be assessed until
we know the outcome of the signal assessment process. If
many signals supported by routine health data are closed
after signal assessment, it may indicate that restricting
analyses to descriptive analyses focusing on characteriza-
tions and feasibility assessments only as was done here is
not effective. If so, it may be better to move more rapidly to
signal assessment and apply a wider range of pharmacoepi-
demiological analyses right away, or if data governance
allows, to perform some of these analyses during signal
validation, with the aim to eliminate false positives, as has
been done in some earlier studies [15, 23].

Access to harmonized routine health databases across
Europe embedded within an infrastructure with real-time
analytical tools facilitated and quality assured the execu-
tion of the descriptive analyses. However, a narrow selec-
tion of drugs and adverse events was assessed in the study,
which may limit the generalisability of our findings. The
focus on generic products may have increased the propor-
tion of signals related to new aspects of known ADRs as
opposed to new ADRs. Moreover, generic products tend to
be used in many countries where adoption of new products
may be slower, and because these drugs have been on the
market for a long time, their exposure is more likely to be
captured in routine health data. Also, the adverse events
studied did not include very rare ones, which might have
been more difficult to study in these data [14]. We further
acknowledge that the eligibility criteria for the drug—event
combinations in this study were driven by reasons to avoid
potential bias and conflicts of interest. Whilst the selected
adverse events are routinely used for safety monitoring of
vaccines, most of these are also considered relevant for
generic drugs due to their multifactorial etiology.

The EHDEN databases we had at our disposal var-
ied in coverage both in terms of geography, setting and
data capture. However, not all databases could contribute
meaningfully to all analyses and sometimes data capture

was insufficient to answer specific questions. Overall, this
emphasizes the importance of having access to a large and
diverse data network. Furthermore, the inferences that can
be drawn from this study are determined by the analytical
choices that were made. Future initiatives may need to con-
sider flexibility in defining the input parameters including
time at risk windows for descriptive analyses. For this study
we used data visualization tools available in the OHDSI
ATLAS interface. Future research could explore the adop-
tion of other tools [47, 48] or develop novel ones tailored to
the signal management process. Lastly, we were only able to
consider analyses in the routine health data for a small set of
signals (8 in total) and we did not systematically assess all
possible analyses that could have informed decision making
for each of these. The design of descriptive analyses was
driven by questions from the signal validation team which
limited the scope of analyses that were undertaken, and we
envision that a more systematic data-driven exploration in
parallel could have further enhanced the value of the data by
providing more hypothesis-free contextual information. For
instance, assessing the potential public health and clinical
impact as well as characterizing all events occurring prior to
drug initiation could provide relevant contextual information
irrespective of the drug—event combination under investiga-
tion. On the other hand, identification of possible alterna-
tive explanations requires a more customized approach as it
requires defining the main indications for treatment that are
specific for each combination. A more systematic approach
would also include pre-determined criteria for when a signal
would be suited for further analysis in routine health data.
Signal validation and prioritization tend to be performed
under significant time pressure, with timescales ranging
from hours to days. The additional insights from analysing
routine health data described above did come at a cost in
added time and complexity of each signal reviewed at this
stage of signal management. Future research may explore
to what extent these analyses can be performed in a more
formulaic way, either via large-scale pre-computed analytics
or via standardized analyses allowing limited customizable
input from signal assessors and epidemiologists. Examples
of analyses lending themselves well to pre-computation may
be those based on pre-specified drugs and established phe-
notypes that have been validated. Analyses better suited for
execution of customizable scripts may be those that require
relevant comparator cohorts, subgroups, or phenotypes to
be defined after a signal has been identified. Generally, the
development and evaluation of additional phenotype defini-
tions is critical to enable broader use and greater impact
of analyses of these data in support of signal management.
There is also a need for more effective bridges between phar-
macovigilance adverse event data coded in MedDRA® and
phenotype definitions in the routine health data. Similarly,
governance around the access and use of routine health data
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may need adaptation, to better support the pharmacovig-
ilance use case. For this study, we were able to base our
applications for data access approval to each data partner
on a single protocol (adhering to the European PAS for-
mat) without requests for individual adaptation, and time
to approval ranged from a few weeks to months. However,
harmonized approval of the same protocol for an entire data-
base network would help further streamline and speed up
this process.

5 Conclusions

Analyses of routine health data within EHDEN can support
signal validation and prioritization. The impact on decision
making in this study varied between signals, and further
research will be required to determine to what extent this can
ultimately improve our ability to identify and communicate
relevant safety signals. Broader use of routine health data in
signal management will require a more formulaic approach
including pre-computation and standardized analyses with
limited customizable input, more extensive phenotyping of
relevant adverse events, as well as more effective data access
reviews.
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