459 research outputs found

    Exercise-responsive phosphoproteins in the heart.

    Get PDF
    Endurance exercise improves cardiac performance and affords protection against cardiovascular diseases but the signalling events that mediate these benefits are largely unexplored. Phosphorylation is a widely studied post-translational modification involved in intracellular signalling, and to discover novel phosphorylation events associated with exercise we have profiled the cardiac phosphoproteome response to a standardised exercise test to peak oxygen uptake (VO2peak). Male Wistar rats (346±18g) were assigned to 3 independent groups (n=6, in each) that were familiarised with running on a motorised treadmill within a metabolic chamber. Animals performed a graded exercise test and were killed either immediately (0h) after or 3h after terminating the test at a standardised physiological end point (i.e. peak oxygen uptake; VO2peak). Control rats were killed at a similar time of day to the exercised animals, to minimise possible circadian effects. Cardiac proteins were digested with trypsin and phosphopeptides were enriched by selective binding to titanium dioxide (TiO2). Phosphopeptides were analysed by liquid chromatography and high-resolution tandem mass spectrometry, and phosphopeptides were quantified by MS1 intensities and identified against the UniProt knowledgebase using MaxQuant (data are available via ProteomeXchange, ID PXD006646). The VO2peak of rats in the 0h and 3h groups was 66±5mlkg(-1)min(-1) and 69.8±5mlkg(-1)min(-1), respectively. Proteome profiling detected 1169 phosphopeptides and one-way ANOVA found 141 significant (P<0.05 with a false discovery rate of 10%) differences. Almost all (97%) of the phosphosites that were responsive to exercise are annotated in the PhosphoSitePlus database but, importantly, the majority of these have not previously been associated with the cardiac response to exercise. More than two-thirds of the exercise-responsive phosphosites were different from those identified in previous phosphoproteome profiling of the cardiac response to β1-adrenergic receptor stimulation. Moreover, we report entirely new phosphorylation sites on 4 cardiac proteins, including S81 of muscle LIM protein, and identified 7 exercise-responsive kinases, including myofibrillar protein kinases such as obscurin, titin and the striated-muscle-specific serine/threonine kinase (SPEG) that may be worthwhile targets for future investigation

    ABO blood group A transferase and its codon 69 substitution enzymes synthesize FORS1 antigen of FORS blood group system

    Get PDF
    Human histo-blood group A transferase (AT) catalyzes the biosynthesis of oligosaccharide A antigen important in blood transfusion and cell/tissue/organ transplantation. This enzyme may synthesize Forssman antigen (FORS1) of the FORS blood group system when exon 3 or 4 of the AT mRNA is deleted and/or the LeuGlyGly tripeptide at codons 266-268 of AT is replaced by GlyGlyAla. The Met69Ser/Thr substitutions also confer weak Forssman glycolipid synthase (FS) activity. In this study, we prepared the human AT derivative constructs containing any of the 20 amino acids at codon 69 with and without the GlyGlyAla substitution, transfected DNA to newly generated COS1(B3GALNT1 + A4GALT) cells expressing an enhanced level of globoside (Gb4), the FS acceptor substrate, and immunologically examined the FORS1 expression. Our results showed that all those substitution constructs at codon 69 exhibited FS activity. The combination with GlyGlyAla significantly increased the activity. The conserved methionine residue in the ABO, but not GBGT1, gene-encoded proteins may implicate its contribution to the separation of these genes in genetic evolution. Surprisingly, with increased Gb4 availability, the original human AT with the methionine residue at codon 69 was also demonstrated to synthesize FORS1, providing another molecular mechanism of FORS1 appearance in cancer of ordinary FORS1-negative individuals

    Global phosphoproteomic profiling reveals perturbed signaling in a mouse model of dilated cardiomyopathy

    Get PDF
    Phospholamban (PLN) plays a central role in Ca2+ homeostasis in cardiac myocytes through regulation of the sarco(endo)plasmic reticulum Ca2+-ATPase 2A (SERCA2A) Ca2+ pump. An inherited mutation converting arginine residue 9 in PLN to cysteine (R9C) results in dilated cardiomyopathy (DCM) in humans and transgenic mice, but the downstream signaling defects leading to decompensation and heart failure are poorly understood. Here we used precision mass spectrometry to study the global phosphorylation dynamics of 1,887 cardiac phosphoproteins in early affected heart tissue in a transgenic R9C mouse model of DCM compared with wild-type littermates. Dysregulated phosphorylation sites were quantified after affinity capture and identification of 3,908 phosphopeptides from fractionated whole-heart homogenates. Global statistical enrichment analysis of the differential phosphoprotein patterns revealed selective perturbation of signaling pathways regulating cardiovascular activity in early stages of DCM. Strikingly, dysregulated signaling through the Notch-1 receptor, recently linked to cardiomyogenesis and embryonic cardiac stem cell development and differentiation but never directly implicated in DCM before, was a prominently perturbed pathway. We verified alterations in Notch-1 downstream components in early symptomatic R9C transgenic mouse cardiomyocytes compared with wild type by immunoblot analysis and confocal immunofluorescence microscopy. These data reveal unexpected connections between stress-regulated cell signaling networks, specific protein kinases, and downstream effectors essential for proper cardiac function

    Inequalities by Income in the Prevalence of Cardiovascular Disease and Its Risk Factors in the Adult Population of Catalonia

    Full text link
    Background Understanding the magnitude of cardiovascular disease (CVD) inequalities is the first step toward addressing them. The linkage of socioeconomic and clinical data in universal health care settings provides critical information to characterize CVD inequalities. Methods and Results We employed a prospective cohort design using electronic health records data from all residents of Catalonia aged 18+ between January and December of 2019 (N=6 332 228). We calculated age-adjusted sex-specific prevalence of 5 CVD risk factors (diabetes, hypertension, hyperlipidemia, obesity, and smoking), and 4 CVDs (coronary heart disease, cerebrovascular disease, atrial fibrillation, and heart failure). We categorized income into high, moderate, low, and very low according to individual income (tied to prescription copayments) and receipt of welfare support. We found large inequalities in CVD and CVD risk factors among men and women. CVD risk factors with the largest inequalities were diabetes, smoking, and obesity, with prevalence rates 2- or 3-fold higher for those with very low (versus high) income. CVDs with the largest inequalities were cerebrovascular disease and heart failure, with prevalence rates 2 to 4 times higher for men and women with very low (versus high) income. Inequalities varied by age, peaking at midlife (30-50 years) for most diseases, while decreasing gradually with age for smoking. Conclusions We found wide and heterogeneous inequalities by income in 5 CVD risk factors and 4 CVD. Our findings in a region with a high-quality public health care system and universal coverage stress that strong equity-promoting policies are necessary to reduce disparities in CVD

    Essential and checkpoint functions of budding yeast ATM and ATR during meiotic prophase are facilitated by differential phosphorylation of a meiotic adaptor protein, Hop1

    Get PDF
    A hallmark of the conserved ATM/ATR signalling is its ability to mediate a wide range of functions utilizing only a limited number of adaptors and effector kinases. During meiosis, Tel1 and Mec1, the budding yeast ATM and ATR, respectively, rely on a meiotic adaptor protein Hop1, a 53BP1/Rad9 functional analog, and its associated kinase Mek1, a CHK2/Rad53-paralog, to mediate multiple functions: control of the formation and repair of programmed meiotic DNA double strand breaks, enforcement of inter-homolog bias, regulation of meiotic progression, and implementation of checkpoint responses. Here, we present evidence that the multi-functionality of the Tel1/Mec1-to-Hop1/Mek1 signalling depends on stepwise activation of Mek1 that is mediated by Tel1/Mec1 phosphorylation of two specific residues within Hop1: phosphorylation at the threonine 318 (T318) ensures the transient basal level Mek1 activation required for viable spore formation during unperturbed meiosis. Phosphorylation at the serine 298 (S298) promotes stable Hop1-Mek1 interaction on chromosomes following the initial phospho-T318 mediated Mek1 recruitment. In the absence of Dmc1, the phospho-S298 also promotes Mek1 hyper-activation necessary for implementing meiotic checkpoint arrest. Taking these observations together, we propose that the Hop1 phospho-T318 and phospho-S298 constitute key components of the Tel1/Mec1- based meiotic recombination surveillance (MRS) network and facilitate effective coupling of meiotic recombination and progression during both unperturbed and challenged meiosis

    Modeling and MEG evidence of early consonance processing in auditory cortex

    Get PDF
    Pitch is a fundamental attribute of auditory perception. The interaction of concurrentpitches gives rise to a sensation that can be characterized by its degree of consonance ordissonance. In this work, we propose that human auditory cortex (AC) processes pitchand consonance through a common neural network mechanism operating at earlycortical levels. First, we developed a new model of neural ensembles incorporatingrealistic neuronal and synaptic parameters to assess pitch processing mechanisms atearly stages of AC. Next, we designed a magnetoencephalography (MEG) experiment tomeasure the neuromagnetic activity evoked by dyads with varying degrees ofconsonance or dissonance. MEG results show that dissonant dyads evoke a pitch onsetFebruary 15, 20191/44 response (POR) with a latency up to 36 ms longer than consonant dyads. Additionally,we used the model to predict the processing time of concurrent pitches; here, consonantpitch combinations were decoded faster than dissonant combinations, in line with theexperimental observations. Specifically, we found a striking match between thepredicted and the observed latency of the POR as elicited by the dyads. These novelresults suggest that consonance processing starts early in human auditory cortex andmay share the network mechanisms that are responsible for (single) pitch processing

    Maximum static inspiratory and expiratory pressures with different lung volumes

    Get PDF
    BACKGROUND: Maximum pressures developed by the respiratory muscles can indicate the health of the respiratory system, help to determine maximum respiratory flow rates, and contribute to respiratory power development. Past measurements of maximum pressures have been found to be inadequate for inclusion in some exercise models involving respiration. METHODS: Maximum inspiratory and expiratory airway pressures were measured over a range of lung volumes in 29 female and 19 male adults. A commercial bell spirometry system was programmed to occlude airflow at nine target lung volumes ranging from 10% to 90% of vital capacity. RESULTS: In women, maximum expiratory pressure increased with volume from 39 to 61 cmH(2)O and maximum inspiratory pressure decreased with volume from 66 to 28 cmH(2)O. In men, maximum expiratory pressure increased with volume from 63 to 97 cmH(2)O and maximum inspiratory pressure decreased with volume from 97 to 39 cmH(2)O. Equations describing pressures for both sexes are: P(e)/P(max )= 0.1426 Ln( %VC) + 0.3402 R(2 )= 0.95 P(i)/P(max )= 0.234 Ln(100 - %VC) - 0.0828 R(2 = )0.96 CONCLUSION: These results were found to be consistent with values and trends obtained by other authors. Regression equations may be suitable for respiratory mechanics models

    Systems-level analyses identify extensive coupling among gene expression machines

    Get PDF
    Here, we develop computational methods to assess and consolidate large, diverse protein interaction data sets, with the objective of identifying proteins involved in the coupling of multicomponent complexes within the yeast gene expression pathway. From among ∼43 000 total interactions and 2100 proteins, our methods identify known structural complexes, such as the spliceosome and SAGA, and functional modules, such as the DEAD-box helicases, within the interaction network of proteins involved in gene expression. Our process identifies and ranks instances of three distinct, biologically motivated motifs, or patterns of coupling among distinct machineries involved in different subprocesses of gene expression. Our results confirm known coupling among transcription, RNA processing, and export, and predict further coupling with translation and nonsense-mediated decay. We systematically corroborate our analysis with two independent, comprehensive experimental data sets. The methods presented here may be generalized to other biological processes and organisms to generate principled, systems-level network models that provide experimentally testable hypotheses for coupling among biological machines

    Predicting protein functions by relaxation labelling protein interaction network

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of key issues in the post-genomic era is to assign functions to uncharacterized proteins. Since proteins seldom act alone; rather, they must interact with other biomolecular units to execute their functions. Thus, the functions of unknown proteins may be discovered through studying their interactions with proteins having known functions. Although many approaches have been developed for this purpose, one of main limitations in most of these methods is that the dependence among functional terms has not been taken into account.</p> <p>Results</p> <p>We developed a new network-based protein function prediction method which combines the likelihood scores of local classifiers with a relaxation labelling technique. The framework can incorporate the inter-relationship among functional labels into the function prediction procedure and allow us to efficiently discover relevant non-local dependence. We evaluated the performance of the new method with one other representative network-based function prediction method using E. coli protein functional association networks.</p> <p>Conclusion</p> <p>Our results showed that the new method has better prediction performance than the previous method. The better predictive power of our method gives new insights about the importance of the dependence between functional terms in protein functional prediction.</p
    corecore