228 research outputs found

    Student Impressions of Syllabus Design: Engaging Versus Contractual Syllabus

    Get PDF
    This study compared student impressions of a text-rich contractual syllabus to a graphic-rich engaging syllabus. Students enrolled in sections of an undergraduate introductory nutrition course viewed either a contractual or engaging syllabus and completed a survey regarding their perceptions of the course and instructor. Students perceived both types of syllabus positively, yet the engaging syllabus was judged to be more visually appealing and comprehensive. More importantly, it motivated more interest in the class and instructor than the contractual syllabus. Using an engaging syllabus may benefit instructors who seek to gain more favorable initial course perceptions by students. This study compared student impressions of a text-rich contractual syllabus to a graphic-rich engaging syllabus. Students enrolled in sections of an undergraduate introductory nutrition course viewed either a contractual or engaging syllabus and completed a survey regarding their perceptions of the course and instructor. Students perceived both types of syllabus positively, yet the engaging syllabus was judged to be more visually appealing and comprehensive. More importantly, it motivated more interest in the class and instructor than the contractual syllabus. Using an engaging syllabus may benefit instructors who seek to gain more favorable initial course perceptions by students

    Analysis of inhibitor of apoptosis protein family expression during mammary gland development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inhibitors-of-Apoptosis-Proteins (IAPs) are an evolutionarily conserved family of proteins capable of regulating several facets of apoptosis. IAPs are frequently dysregulated in cancer, but their role in the regulation of apoptosis during developmental processes is not fully understood. Here we examined the expression of IAPs during the post-natal development of the mouse mammary gland, which is a tissue that exhibits a profound induction of apoptosis during involution.</p> <p>Results</p> <p>Six out of eight mammalian IAP family members are expressed in the mammary gland. Notably, quantitative PCR and immunoblotting revealed that XIAP, c-IAP1 and c-IAP2 are down-regulated in pregnancy and lactation, and prior to the onset of involution. In cultured mammary epithelial cells (MECs), XIAP levels decreased in response to inhibition of growth factor signalling. Maintaining XIAP levels in MECs by expressing exogenous XIAP protected them from all apoptotic stimuli tested.</p> <p>Conclusions</p> <p>These data suggest that the developmental regulation of IAP expression <it>in vivo </it>contributes to naturally occurring programmes of cell death.</p

    Sodium channel-inhibiting drugs and survival of breast, colon and prostate cancer: a population-based study

    Get PDF
    Metastasis is the leading cause of cancer-related deaths. Voltage-gated sodium channels (VGSCs) regulate invasion and metastasis. Several VGSC-inhibiting drugs reduce metastasis in murine cancer models. We aimed to test the hypothesis that patients taking VGSC-inhibiting drugs who developed cancer live longer than those not taking these drugs. A cohort study was performed on primary care data from the QResearch database, including patients with breast, bowel or prostate cancer. Cox proportional hazards regression was used to compare the survival from cancer diagnosis of patients taking VGSC-inhibiting drugs with those not exposed to these drugs. Median time to death was 9.7 years in the exposed group and 18.4 years in the unexposed group, and exposure to these medications significantly increased mortality. Thus, exposure to VGSC-inhibiting drugs associates with reduced survival in breast, bowel and prostate cancer patients. This finding is not consistent with the preclinical data. Despite the strengths of this study including the large sample size, the study is limited by missing information on potentially important confounders such as cancer stage, co-morbidities and cause of death. Further research, which is able to account for these confounding issues, is needed to investigate the relationship between VGSC-inhibiting drugs and cancer survival

    Assessment of long-range correlation in animal behaviour time series: the temporal pattern of locomotor activity of Japanese quail (Coturnix coturnix) and mosquito larva (Culex quinquefasciatus)

    Get PDF
    The aim of this study was to evaluate the performance of a classical method of fractal analysis, Detrended Fluctuation Analysis (DFA), in the analysis of the dynamics of animal behavior time series. In order to correctly use DFA to assess the presence of long-range correlation, previous authors using statistical model systems have stated that different aspects should be taken into account such as: 1) the establishment by hypothesis testing of the absence of short term correlation, 2) an accurate estimation of a straight line in the log-log plot of the fluctuation function, 3) the elimination of artificial crossovers in the fluctuation function, and 4) the length of the time series. Taking into consideration these factors, herein we evaluated the presence of long-range correlation in the temporal pattern of locomotor activity of Japanese quail ({\sl Coturnix coturnix}) and mosquito larva ({\sl Culex quinquefasciatus}). In our study, modeling the data with the general ARFIMA model, we rejected the hypothesis of short range correlations (d=0) in all cases. We also observed that DFA was able to distinguish between the artificial crossover observed in the temporal pattern of locomotion of Japanese quail, and the crossovers in the correlation behavior observed in mosquito larvae locomotion. Although the test duration can slightly influence the parameter estimation, no qualitative differences were observed between different test durations

    Dynamic interaction of PTP mu with multiple cadherins in vivo

    Get PDF
    There is a growing body of evidence to implicate reversible tyrosine phosphorylation as an important mechanism in the control of the adhesive function of cadherins. We previously demonstrated that the receptor protein tyrosine phosphatase PTP mu associates with the cadherin-catenin complex in various tissues and cells and, therefore, may be a component of such a regulatory mechanism (Brady-Kalnay, S.M., D.L. Rimm, and N.K. Tonks. 1995. J. Cell Biol. 130:977-986). In this study, we present further characterization of this interaction using a variety of systems. We observed that PTP mu interacted with N-cadherin, E-cadherin, and cadherin-4 (also called R-cadherin) in extracts of rat lung. We observed a direct interaction between PTP mu, and E-cadherin after coexpression in Sf9 cells. In WC5 cells, which express a temperature-sensitive mutant form of v-Src, the complex between PTP mu and E-cadherin was dynamic, and conditions that resulted in tyrosine phosphorylation of E-cadherin were associated with dissociation of PTP mu from the complex. Furthermore, we have demonstrated that the COOH-terminal 38 residues of the cytoplasmic segment of E-cadherin was required for association with PTP mu in WC5 cells. Zondag et al. (Zondag, G., W. Moolenaar, and M. Gebbink. 1996. J. Cell Biol. 134: 1513-1517) have asserted that the association we observed between PTP mu and the cadherin-catenin complex in immunoprecipitates of the phosphatase arises from nonspecific cross-reactivity between BK2, our antibody to PTP mu, and cadherins. In this study we have confirmed our initial observation and demonstrated the presence of cadherin in immunoprecipitates of PTP mu. obtained with three antibodies that recognize distinct epitopes in the phosphatase. In addition, we have demonstrated directly that the anti-PTP mu antibody BK2 that we used initially did not cross-react with cadherin. Our data reinforce the observation of an interaction between PTP mu, and E-cadherin in vitro and in vivo, further emphasizing the potential importance of reversible tyrosine phosphorylation in regulating cadherin function

    Sodium channel gene family: epilepsy mutations, gene interactions and modifier effects

    Full text link
    The human sodium channel family includes seven neuronal channels that are essential for the initiation and propagation of action potentials in the CNS and PNS. In view of their critical role in neuronal firing and their strong sequence conservation during evolution, it is not surprising that mutations in the sodium channel genes are responsible for a growing spectrum of channelopathies. Nearly 700 mutations of the SCN1A gene have been identified in patients with Dravet's syndrome (severe myoclonic epilepsy of infancy), making this the most commonly mutated gene in human epilepsy. A small number of mutations have been found in SCN2A , SCN3A and SCN9A , and studies in the mouse suggest that SCN8A may also contribute to seizure disorders. Interactions between genetic variants of SCN2A and KCNQ2 in the mouse and variants of SCN1A and SCN9A in patients provide models of potential genetic modifier effects in the more common human polygenic epilepsies. New methods for generating induced pluripotent stem cells and neurons from patients will facilitate functional analysis of amino acid substitutions in channel proteins. Whole genome sequencing and exome sequencing in patients with epilepsy will soon make it possible to detect multiple variants and their interactions in the genomes of patients with seizure disorders.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79388/1/jphysiol.2010.188482.pd

    How Noisy Does a Noisy Miner Have to Be? Amplitude Adjustments of Alarm Calls in an Avian Urban ‘Adapter’

    Get PDF
    Background: Urban environments generate constant loud noise, which creates a formidable challenge for many animals relying on acoustic communication. Some birds make vocal adjustments that reduce auditory masking by altering, for example, the frequency (kHz) or timing of vocalizations. Another adjustment, well documented for birds under laboratory and natural field conditions, is a noise level-dependent change in sound signal amplitude (the ‘Lombard effect’). To date, however, field research on amplitude adjustments in urban environments has focused exclusively on bird song. Methods: We investigated amplitude regulation of alarm calls using, as our model, a successful urban ‘adapter ’ species, the Noisy miner, Manorina melanocephala. We compared several different alarm calls under contrasting noise conditions. Results: Individuals at noisier locations (arterial roads) alarm called significantly more loudly than those at quieter locations (residential streets). Other mechanisms known to improve sound signal transmission in ‘noise’, namely use of higher perches and in-flight calling, did not differ between site types. Intriguingly, the observed preferential use of different alarm calls by Noisy miners inhabiting arterial roads and residential streets was unlikely to have constituted a vocal modification made in response to sound-masking in the urban environment because the calls involved fell within the main frequency range of background anthropogenic noise. Conclusions: The results of our study suggest that a species, which has the ability to adjust the amplitude of its signals

    Regulation of voltage-gated sodium channel expression in cancer : hormones, growth factors and auto-regulation

    Get PDF
    Although ion channels are increasingly being discovered in cancer cells in vitro and in vivo, and shown to contribute to different aspects and stages of the cancer process, much less is known about the mechanisms controlling their expression. Here, we focus on voltage-gated Na(+) channels (VGSCs) which are upregulated in many types of carcinomas where their activity potentiates cell behaviours integral to the metastatic cascade. Regulation of VGSCs occurs at a hierarchy of levels from transcription to post-translation. Importantly, mainstream cancer mechanisms, especially hormones and growth factors, play a significant role in the regulation. On the whole, in major hormone-sensitive cancers, such as breast and prostate cancer, there is a negative association between genomic steroid hormone sensitivity and functional VGSC expression. Activity-dependent regulation by positive feedback has been demonstrated in strongly metastatic cells whereby the VGSC is self-sustaining, with its activity promoting further functional channel expression. Such auto-regulation is unlike normal cells in which activity-dependent regulation occurs mostly via negative feedback. Throughout, we highlight the possible clinical implications of functional VGSC expression and regulation in cancer

    Osteological and Soft-Tissue Evidence for Pneumatization in the Cervical Column of the Ostrich (Struthio camelus) and Observations on the Vertebral Columns of Non-Volant, Semi-Volant and Semi-Aquatic Birds

    Get PDF
    © 2015 Apostolaki et al. This is an open access article distributed under the terms of the Creative Commons Attribution License [4.0], which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article
    • …
    corecore