1,316 research outputs found

    On the link between ocean biota emissions, aerosol, and maritime clouds: Airborne, ground, and satellite measurements off the coast of California

    Get PDF
    Surface, airborne, and satellite measurements over the eastern Pacific Ocean off the coast of California during the period between 2005 and 2007 are used to explore the relationship between ocean chlorophyll a, aerosol, and marine clouds. Periods of enhanced chlorophyll a and wind speed are coincident with increases in particulate diethylamine and methanesulfonate concentrations. The measurements indicate that amines are a source of secondary organic aerosol in the marine atmosphere. Subsaturated aerosol hygroscopic growth measurements indicate that the organic component during periods of high chlorophyll a and wind speed exhibit considerable water uptake ability. Increased average cloud condensation nucleus (CCN) activity during periods of increased chlorophyll a levels likely results from both size distribution and aerosol composition changes. The available data over the period of measurements indicate that the cloud microphysical response, as represented by either cloud droplet number concentration or cloud droplet effective radius, is likely influenced by a combination of atmospheric dynamics and aerosol perturbations during periods of high chlorophyll a concentrations

    3-D model simulations of dynamical and microphysical interactions in pyroconvective clouds under idealized conditions

    Get PDF
    Abstract. Dynamical and microphysical processes in pyroconvective clouds in mid-latitude conditions are investigated using idealized three-dimensional simulations with the Active Tracer High resolution Atmospheric Model (ATHAM). A state-of-the-art two-moment microphysical scheme building upon a realistic parameterization of cloud condensation nuclei (CCN) activation has been implemented in order to study the influence of aerosol concentration on cloud development. The results show that aerosol concentration influences the formation of precipitation. For low aerosol concentrations (NCN = 200 cm−3), rain droplets are rapidly formed by autoconversion of cloud droplets. This also triggers the formation of large graupel and hail particles, resulting in an early onset of precipitation. With increasing aerosol concentration (NCN = 1000 cm−3 and NCN = 20 000 cm−3) the formation of rain droplets is delayed due to more but smaller cloud droplets. Therefore, the formation of ice crystals and snowflakes becomes more important for the eventual formation of graupel and hail, which is delayed at higher aerosol concentrations. This results in a delay of the onset of precipitation and a reduction of its intensity with increasing aerosol concentration. This study is the first detailed investigation of the interaction between cloud microphysics and the dynamics of a pyroconvective cloud using the combination of a high-resolution atmospheric model and a detailed microphysical scheme. This work has been supported by an International Max Planck Research School fellowship and the Max Planck Society.This is the final published version. It first appeared at http://www.atmos-chem-phys.net/14/7573/2014/acp-14-7573-2014.html

    Spatial and temporal distribution of atmospheric aerosols in the lowermost troposphere over the Amazonian tropical rainforest

    No full text
    International audienceWe present measurements of aerosol physico-chemical properties below 5 km altitude over the tropical rain forest and the marine boundary layer (MBL) obtained during the LBA-CLAIRE 1998 project. The MBL aerosol size distribution some 50-100km of the coast of French Guyana and Suriname showed a bi-modal shape typical of aged and cloud processed aerosol. The average particle number density in the MBL was 383cm-3. The daytime mixed layer height over the rain forest for undisturbed conditions was estimated to be between 1200-1500m. During the morning hours the height of the mixed layer increased by 144-180mh-1. The median daytime aerosol number density in the mixed layer increased from 450cm-3 in the morning to almost 800cm-3 in the late afternoon. The evolution of the aerosol size distribution in the daytime mixed layer over the rain forest showed two distinct patterns. Between dawn and midday, the Aitken mode particle concentrations increased, whereas later during the day, a sharp increase of the accumulation mode aerosol number densities was observed, resulting in a doubling of the morning accumulation mode concentrations from 150cm-3 to 300cm-3. Potential sources of the Aitken mode particles are discussed here including the rapid growth of ultrafine aerosol particles formed aloft and subsequently entrained into the mixed layer, as well as the contribution of emissions from the tropical vegetation to Aitken mode number densities. The observed increase of the accumulation mode aerosol number densities is attributed to the combined effect of: the direct emissions of primary biogenic particles from the rain forest and aerosol in-cloud processing by shallow convective clouds. Based on the similarities among the number densities, the size distributions and the composition of the aerosol in the MBL and the nocturnal residual layer we propose that the air originating in the MBL is transported above the nocturnal mixed layer up to 300-400km inland over the rain forest by night without significant processing

    Hygroscopicity distribution concept for measurement data analysis and modeling of aerosol particle mixing state with regard to hygroscopic growth and CCN activation

    Get PDF
    This paper presents a general concept and mathematical framework of particle hygroscopicity distribution for the analysis and modeling of aerosol hygroscopic growth and cloud condensation nucleus (CCN) activity. The cumulative distribution function of particle hygroscopicity, H(κ, Dd) is defined as the number fraction of particles with a given dry diameter, Dd, and with an effective hygroscopicity parameter smaller than the parameter κ. From hygroscopicity tandem differential mobility analyzer (HTDMA) and size-resolved CCN measurement data, H(κ, Dd) can be derived by solving the κ-Köhler model equation. Alternatively, H(κ, Dd) can be predicted from measurement or model data resolving the chemical composition of single particles. A range of model scenarios are used to explain and illustrate the concept, and exemplary practical applications are shown with HTDMA and CCN measurement data from polluted megacity and pristine rainforest air. Lognormal distribution functions are found to be suitable for approximately describing the hygroscopicity distributions of the investigated atmospheric aerosol samples. For detailed characterization of aerosol hygroscopicity distributions, including externally mixed particles of low hygroscopicity such as freshly emitted soot, we suggest that size-resolved CCN measurements with a wide range and high resolution of water vapor supersaturation and dry particle diameter should be combined with comprehensive HTDMA measurements and size-resolved or single-particle measurements of aerosol chemical composition, including refractory components. In field and laboratory experiments, hygroscopicity distribution data from HTDMA and CCN measurements can complement mixing state information from optical, chemical and volatility-based techniques. Moreover, we propose and intend to use hygros

    Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment

    Get PDF
    This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the southwestern part of the Brazilian Amazon rainforest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA) field experiment, which consisted of a combination of aircraft and ground-based measurements over Brazil, aimed to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm), occasionally superimposed by intense (up to 2 ppm of CO), freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ∼ 1000 cm−3 to peaks of up to 35 000 cm−3 (during biomass burning (BB) events, corresponding to an average submicron mass mean concentrations of 13.7 µg m−3 and peak concentrations close to 100 µg m−3 . Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 µg m−3 . The inorganic species, NH4, SO4, NO3, and Cl, were observed, on average, at concentrations of 0.44, 0.34, 0.19, and 0.01 µg m−3 , respectively. Equivalent black carbon (BCe) ranged from 0.2 to 5.5 µg m−3 , with an average concentration of 1.3 µg m−3 . During BB peaks, organics accounted for over 90 % of total mass (submicron non-refractory plus BCe), among the highest values described in the literature. We examined the ageing of biomass burning organic aerosol (BBOA) using the changes in the H : C and O : C ratios, and found that throughout most of the aerosol processing (O : C ∼= 0.25 to O : C ∼= 0.6), no remarkable change is observed in the H : C ratio (∼ 1.35). Such a result contrasts strongly with previous observations of chemical ageing of both urban and Amazonian biogenic aerosols. At higher levels of processing (O : C > 0.6), the H : C ratio changes with a H : C/O : C slope of −0.5, possibly due to the development of a combination of BB (H : C/O : C slope = 0) and biogenic (H : C/O : C slope = −1) organic aerosol (OA). An analysis of the 1OA/1CO mass ratios yields very little enhancement in the OA loading with atmospheric processing, consistent with previous observations. These results indicate that negligible secondary organic aerosol (SOA) formation occurs throughout the observed BB plume Published by Copernicus Publications on behalf of the European Geosciences Union. 12070 J. Brito et al.: Ground-based aerosol characterization during SAMBBA processing, or that SOA formation is almost entirely balanced by OA volatilization. Positive matrix factorization (PMF) of the organic aerosol spectra resulted in three factors: fresh BBOA, aged BBOA, and low-volatility oxygenated organic aerosol (LV-OOA). Analysis of the diurnal patterns and correlation with external markers indicates that during the first part of the campaign, OA concentrations are impacted by local fire plumes with some chemical processing occurring in the near-surface layer. During the second part of the campaign, long-range transport of BB plumes above the surface layer, as well as potential SOAs formed aloft, dominates OA concentrations at our ground-based sampling site. This manuscript describes the first ground-based deployment of the aerosol mass spectrometry at a site heavily impacted by biomass burning in the Amazon region, allowing a deeper understanding of aerosol life cycle in this important ecosystem.This work was supported by the Foundation for Research Support of the State of São Paulo (FAPESP, projects 2012/14437-9 and 2013/05014-0), CNPq project 475735- 2012-9, INCT Amazonia, and Natural Environment Research Council (NERC) project NE/J010073/1. We thank A. Ribeiro, A. L. Loureiro, F. Morais, F. Jorge, and S. Morais for technical and logistics support. We thank the National Institute of Meteorology for providing valuable meteorological data. We gratefully acknowledge S. Hacon, J. Silva, and W. Bastos for support in the successful operation of the sampling site

    Contribution of regional aerosol nucleation to low-level CCN in an Amazonian deep convective environment: results from a regionally nested global model

    Get PDF
    Global model studies and observations have shown that downward transport of aerosol nucleated in the free troposphere is a major source of cloud condensation nuclei (CCN) to the global boundary layer. In Amazonia, observations show that this downward transport can occur during strong convective activity. However, it is not clear from these studies over what spatial scale this cycle of aerosol formation and downward supply of CCN is occurring. Here, we aim to quantify the extent to which the supply of aerosol to the Amazonian boundary layer is generated from nucleation within a 1000 km regional domain or from aerosol produced further afield and the effectiveness of the transport by deep convection. We run the atmosphere-only configuration of the HadGEM3 climate model incorporating a 440 km × 1080 km regional domain over Amazonia with 4 km resolution. Simulations were performed over several diurnal cycles of convection. Below 2 km altitude in the regional domain, our results show that new particle formation within the regional domain accounts for only between 0.2 % and 3.4 % of all Aitken and accumulation mode aerosol particles, whereas nucleation that occurred outside the domain (in the global model) accounts for between 58 % and 81 %. The remaining aerosol is primary in origin. Above 10 km, the regional-domain nucleation accounts for up to 66 % of Aitken and accumulation mode aerosol, but over several days very few of these particles nucleated above 10 km in the regional domain are transported into the boundary layer within the 1000 km region, and in fact very little air is mixed that far down. Rather, particles transported downwards into the boundary layer originated from outside the regional domain and entered the domain at lower altitudes. Our model results show that CCN entering the Amazonian boundary layer are transported downwards gradually over multiple convective cycles on scales much larger than 1000 km. Therefore, on a 1000 km scale in the model (approximately one-third the size of Amazonia), trace gas emission, new particle formation, transport and CCN production do not form a “closed loop” regulated by the biosphere. Rather, on this scale, long-range transport of aerosol is a much more important factor controlling CCN in the boundary layer

    Estimation of black carbon emissions from Siberian fires using satellite observations of absorption and extinction optical depths

    Get PDF
    Black carbon (BC) emissions from open biomass burning (BB) are known to have a considerable impact on the radiative budget of the atmosphere at both global and regional scales; however, these emissions are poorly constrained in models by atmospheric observations, especially in remote regions. Here, we investigate the feasibility of constraining BC emissions from BB using satellite observations of the aerosol absorption optical depth (AAOD) and the aerosol extinction optical depth (AOD) retrieved from OMI (Ozone Monitoring Instrument) and MODIS (Moderate Resolution Imaging Spectroradiometer) measurements, respectively. We consider the case of Siberian BB BC emissions, which have the strong potential to impact the Arctic climate system. Using aerosol remote sensing data collected at Siberian sites of the AErosol RObotic NETwork (AERONET) along with the results of the fourth Fire Lab at Missoula Experiment (FLAME-4), we establish an empirical parameterization relating the ratio of the elemental carbon (EC) and organic carbon (OC) contents in BB aerosol to the ratio of AAOD and AOD at the wavelengths of the satellite observations. Applying this parameterization to the BC and OC column amounts simulated using the CHIMERE chemistry transport model, we optimize the parameters of the BB emission model based on MODIS measurements of the fire radiative power (FRP); we then obtain top-down optimized estimates of the total monthly BB BC amounts emitted from intense Siberian fires that occurred from May to September 2012. The top-down estimates are compared to the corresponding values obtained using the Global Fire Emissions Database (GFED4) and the Fire Emission Inventory–northern Eurasia (FEI-NE). Our simulations using the optimized BB aerosol emissions are verified against AAOD and AOD data that were withheld from the estimation procedure. The simulations are further evaluated against in situ EC and OC measurements at the Zotino Tall Tower Observatory (ZOTTO) and also against aircraft aerosol measurement data collected in the framework of the Airborne Extensive Regional Observations in SIBeria (YAK-AEROSIB) experiments. We conclude that our BC and OC emission estimates, considered with their confidence intervals, are consistent with the ensemble of the measurement data analyzed in this study. Siberian fires are found to emit 0.41±0.14&thinsp;Tg of BC over the whole 5-month period considered; this estimate is a factor of 2 larger and a factor of 1.5 smaller than the corresponding estimates based on the GFED4 (0.20&thinsp;Tg) and FEI-NE (0.61&thinsp;Tg) data, respectively. Our estimates of monthly BC emissions are also found to be larger than the BC amounts calculated using the GFED4 data and smaller than those calculated using the FEI-NE data for any of the 5 months. Particularly large positive differences of our monthly BC emission estimates with respect to the GFED4 data are found in May and September. This finding indicates that the GFED4 database is likely to strongly underestimate BC emissions from agricultural burns and grass fires in Siberia. All of these differences have important implications for climate change in the Arctic, as it is found that about a quarter of the huge BB BC mass emitted in Siberia during the fire season of 2012 was transported across the polar circle into the Arctic. Overall, the results of our analysis indicate that a combination of the available satellite observations of AAOD and AOD can provide the necessary constraints on BB BC emissions.</p
    corecore