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Abstract. This paper presents a general concept and mathe-
matical framework of particle hygroscopicity distribution for
the analysis and modeling of aerosol hygroscopic growth and
cloud condensation nucleus (CCN) activity. The cumulative
distribution function of particle hygroscopicity,H(κ,Dd) is
defined as the number fraction of particles with a given dry
diameter,Dd, and with an effective hygroscopicity parameter
smaller than the parameterκ. From hygroscopicity tandem
differential mobility analyzer (HTDMA) and size-resolved
CCN measurement data,H(κ,Dd) can be derived by solving
the κ-Köhler model equation. Alternatively,H(κ,Dd) can
be predicted from measurement or model data resolving the
chemical composition of single particles.

A range of model scenarios are used to explain and illus-
trate the concept, and exemplary practical applications are
shown with HTDMA and CCN measurement data from pol-
luted megacity and pristine rainforest air. Lognormal distri-
bution functions are found to be suitable for approximately
describing the hygroscopicity distributions of the investi-
gated atmospheric aerosol samples.

For detailed characterization of aerosol hygroscopicity
distributions, including externally mixed particles of low hy-
groscopicity such as freshly emitted soot, we suggest that
size-resolved CCN measurements with a wide range and high
resolution of water vapor supersaturation and dry particle di-
ameter should be combined with comprehensive HTDMA
measurements and size-resolved or single-particle measure-
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ments of aerosol chemical composition, including refractory
components. In field and laboratory experiments, hygro-
scopicity distribution data from HTDMA and CCN measure-
ments can complement mixing state information from opti-
cal, chemical and volatility-based techniques. Moreover, we
propose and intend to use hygroscopicity distribution func-
tions in model studies investigating the influence of aerosol
mixing state on the formation of cloud droplets.

1 Introduction

Aerosol particles serving as cloud condensation nuclei
(CCN) play an important role in the cloud formation process
(Pruppacher and Klett, 1997). At a given water vapor super-
saturation, the activation of CCN into cloud droplets is deter-
mined by particle size and composition, according to Köhler
theory (Köhler, 1936). Petters and Kreidenweis (2007) pro-
posed aκ-Köhler model approach using a simple parameter,
κ, as a quantitative measure of aerosol water uptake charac-
teristics and CCN activity. The values ofκ can be determined
experimentally from hygroscopicity tandem differential mo-
bility analyzer (HTDMA) and CCN measurement data.

Size dependence ofκ has been found in CCN measure-
ments of atmospheric aerosols (Gunthe et al., 2009; Petters
et al., 2009a; Rose et al., 2010a). The spread ofκ values
among particles of the same size may be relevant for CCN
activation and cloud formation but is not always described
and used in earlier studies. Internally mixed particles have
the same chemical composition and hence the same hygro-
scopicity, so differences inκ among particles of the same
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size indicate how well they are mixed. If theκ distribution
among particles of a given size can be measured, the (hygro-
scopicity related) particle mixing state can also be derived.

Thus, κ distribution data can complement information
about aerosol mixing state obtained with other measurement
techniques like the volatility tandem differential mobility an-
alyzer (VTDMA) (Orsini et al., 1996), the single-particle
soot photometer (SP2) (Schwarz et al., 2006), scanning and
transmission electron microscopes (STEM) and single parti-
cle mass spectrometers (SPMS) (McMurry et al., 1996; Bu-
zorius et al., 2002; Krejci et al., 2005; Murphy et al., 2006).

In this paper, we introduce a concept of particle hygro-
scopicity distribution and we show how it can be related to
hygroscopicity measurements. Model aerosols are used to
explain and illustrate the concept. Exemplary applications
are shown with HTDMA and CCN field measurement data
from polluted megacity and pristine rainforest air. Early and
recent HTDMA studies have already presented distributions
of diameter growth factors, which are also related to par-
ticle hygroscopicity, and addressed the relation to aerosol
mixing state (Stolzenburg and McMurry, 1988; Swietlicki et
al., 2008; Kammermann et al., 2010). To our knowledge,
however, a comprehensive concept of hygroscopicity distri-
bution, including a general set of equations and a link to the
measurement and prediction of CCN has not been presented
before.

2 Concept and methods

2.1 Hygroscopicity distribution

2.1.1 Definition

Particle size distributions are widely used in aerosol science
and atmospheric research (Seinfeld and Pandis, 2006). We
introduce a similar concept and mathematical formalism for
the hygroscopicity of aerosol particles, i.e., their ability to
absorb water vapor. In an ensemble of aerosol particles, the
hygroscopicity of each particle can be described by an “effec-
tive” hygroscopicity parameterκ (Petters and Kreidenweis,
2007; Sullivan et al., 2009). Here “effective” means that the
parameter accounts not only for the reduction of water activ-
ity by the solute but also for surface tension effects (Rose et
al., 2008; Gunthe et al., 2009; Pöschl et al., 2009). For atmo-
spheric aerosols, the range ofκ typically varies from as low
as∼0.01 for some combustion aerosol particles up to∼1 for
sea-salt particles (Petters and Kreidenweis, 2007; Andreae
and Rosenfeld, 2008; Niedermeier et al., 2008; Petters et al.,
2009a). When we assort the particles byκ, a hygroscopicity
distribution can be defined and described in analogy to the
size distribution of the aerosol population.

For particles with a dry diameter ofDd, i.e., within an
infinitesimal size range ofDd to Dd + dDd, the fractional
cumulative distribution function (CDF) of hygroscopicity,
H(κ,Dd) is defined as the number fraction of particles hav-
ing a hygroscopicity parameter smaller thanκ. In other
words, H(κ,Dd) is the number concentration of particles
having a hygroscopicity parameter smaller thanκ divided by
the total number concentration of particles in the size range
[Dd, Dd+dDd].

For every given diameter or size range,H(κ,Dd) is a nor-
malized dimensionless CDF with a maximum value of one,
i.e.,H(κ → ∞,Dd) = 1.

Accordingly, the fractional probability distribution func-
tion (PDF) of hygroscopicity,h(κ,Dd), is defined as the par-
tial derivative of the CDF with respect toκ:

h(κ,Dd) =
∂H(κ,Dd)

∂κ
(1)

Note thath(κ,Dd) is also normalized and dimensionless
but not limited to values≤ 1. Logarithmic PDFs are partic-
ularly useful for describing lognormally distributed ambient
aerosols as detailed below. They can be defined and con-
verted by the following equations:

he(κ,Dd) =
∂H(κ,Dd)

∂ lnκ
(2)

h10(κ,Dd) =
∂H(κ,Dd)

∂ logκ
(3)

he(κ,Dd) = κh(κ,Dd) (4)

h10(κ,Dd) = 2.303κh(κ,Dd) (5)

The hygroscopicity distribution concept is not limited to
the effective hygroscopicity parameterκ as outlined above.
Similar distribution functions can also be defined and applied
with other hygroscopicity parameters such as equivalent ion
densities (Rissler et al., 2006; Wex et al., 2007) or equivalent
soluble fractions of ammonium sulfate or bisulfate as used
in many earlier studies (Gunthe et al., 2009 and references
therein). Moreover, similar formalisms could also be based
on the van’t Hoff factor (McDonald, 1953) or the product
of the stoichiometric dissociation number and osmotic co-
efficient of the solute (Robinson and Stokes, 1959; Rose et
al., 2008; and references therein) averaged over all chemi-
cal components of a particle according to mixing rules (e.g.,
the Zdanovski-Stokes-Robinson approximation), or more ad-
vanced models taking into account complex solute inter-
actions and concentration dependencies (e.g., the extended
aerosol inorganic model of Clegg et al., 2008).

2.1.2 Characteristic distribution parameters

In many cases, it is convenient and useful to summarize the
key features of distributions by a few parameters such as
mean values and standard deviations.
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For particles with a dry diameterDd, the arithmetic mean
(κ(Dd)) and standard deviation (σκ(Dd)) of κ are given by:

κ(Dd) =

∞∫
0

κh(κ,Dd)dκ (6)

σ 2
κ (Dd) =

∞∫
0

(κ −κ(Dd))
2h(κ,Dd)dκ (7)

The geometric mean (κg(Dd)) and the geometric standard
deviation (σκ,g(Dd)) of κ for particles with a dry diameter
Dd are given by:

κg(Dd) = exp

 ∞∫
0

(lnκ)h(κ,Dd)dκ

 (8)

ln2σκ,g(Dd) =

∞∫
0

(lnκ − lnκg(Dd))
2h(κ,Dd)dκ (9)

The median (κmed(Dd)) of κ for particles with a dry diam-
eterDd is defined by:

H(κmed(Dd),Dd) = 0.5 (10)

κmed(Dd)∫
0

h(κ,Dd)dκ = 0.5 (11)

Modal values of the hygroscopicity distribution (κmode(Dd)),
i.e., local maxima in a plot ofh(κ,Dd) vs.κ, are defined by(

∂h(κ,Dd)

∂κ

)
κmode

= 0 (12)

By integration over all particle diameters, characteristic
parameters can also be calculated for the entire particle pop-
ulation of an aerosol. For example, the total arithmetic mean
value (κ tot) and the total geometric mean value (κg,tot) are
given by:

κ tot =

∞∫
0

κ(Dd)n(Dd)dDd

∞∫
0

n(Dd)dDd

(13)

κg,tot = exp


∞∫
0

ln(κg(Dd))n(Dd)dDd

∞∫
0

n(Dd)dDd

 (14)

Here,n(Dd) is the particle number size distribution function
(PDF), andN(Dd) is the number concentration of particles
with a diameter smaller thanDd (CDF):

n(Dd) =
dN(Dd)

dDd
(15)

2.1.3 Lognormal hygroscopicity distributions

Aerosol hygroscopicity parameters determined from HT-
DMA and CCN measurements are often presented in discrete
forms (tables or graphs). For efficient comparison, general-
ization, and use in theoretical studies, it is convenient to use
standardized mathematical functions with a few variable pa-
rameters to fit and represent measurement data.

Aerosol particle size distributions are often described by
one or multiple lognormal distribution functions (Aitchison
and Brown, 1957; Seinfeld and Pandis, 2006). Accordingly,
we suggest using cumulative lognormal distribution func-
tions to describeH(κ,Dd) for given values ofDd. Potential
size dependencies of the characteristic CDF parameters can
then be handled as detailed and illustrated below (Sects. 3
and 4).

The following expression of a multi-mode lognormal CDF
can be used to fitH(κ,Dd) at a given value ofDd:

H(κ,Dd) =

m∑
i=1

ai(Dd)(
1

2
+

1

2
erf(

logκ − logκg,i(Dd)
√

2logσκ,g,i(Dd)
)) (16)

Here, “erf” is the Gauss error function,m is the number of
modes, andai(Dd), κg,i(Dd) andσκ,g,i(Dd) are the fit pa-
rameters for each mode (i = 1 to m): ai(Dd) is the number
fraction of modei, κg,i(Dd) is the geometric mean or me-
dian value ofκ in modei, andσκ,g,i(Dd) is the geometric
standard deviation ofκ in modei.

2.2 HTDMA data analysis

In HTDMA measurements, nearly mono-disperse dry
aerosol particles with a diameterDd are selected by the first
differential mobility analyzer (DMA) and subsequently equi-
librated at a defined relative humidity, RH, or water vapor
saturation ratio,s, respectively (s = RH/(100%)). Then a sec-
ond DMA is used to measure the size distribution of the equi-
librated wet particles. Integration of the wet particle size dis-
tribution, yields the number fraction of particles with wet di-
ameters smaller thanDw, which we denote asF(Dw,Dd,s).
For experimental uncertainties see Sect. 2.4.

According to theκ-Köhler approach (Petters and Kreiden-
weis, 2007), the equilibrium wet particle diameter,Dw, de-
pends on particle hygroscopicity (κ) and water vapor satura-
tion ratio (s):

s =
D3

w −D3
d

D3
w −D3

d(1−κ)
exp

(
4σsolMw

R TρwDw

)
(17)

Here,σsol is the surface tension of a solution droplet (wet
particle),Mw is the molar mass of water,R is the universal
gas constant,T is the temperature, andρw is the density of
pure water.
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Assuming thatσsol equals the surface tension of water
(σw=0.072 J m−2 at 298.15 K), an effective hygroscopicity
parameterκ can be calculated fromDw,Dd ands:

κ(Dw,Dd,s)= 1−
D3

w

D3
d

+
D3

w −D3
d

sD3
d

exp

(
4σwMw

R T ρwDw

)
(18)

Thus, the fraction of particles with a wet diameter smaller
thanDw determined by HTDMA measurements corresponds
to the fraction of particles with an effective hygroscopic-
ity parameter smaller thanκ(Dw,Dd,s). Accordingly, every
HTDMA data point ofF(Dw,Dd,s) directly corresponds to
a data point of the cumulative hygroscopicity distribution:

H(κ(Dw,Dd,s),Dd) = F(Dw,Dd,s) (19)

Figure 1 shows an exemplary case ofH(κ,Dd) derived
from HTDMA measurements in Beijing, China (Massling et
al., 2009). It is based on one-day average measurement re-
sults of 12 June 2004. The dry particle diameters selected by
the first DMA were 80 nm and 150 nm, respectively, and the
RH range was 88.6%±0.6% (s = 0.886±0.006). The HT-
DMA calibration and data inversion accounted for the count-
ing efficiency of the condensation particle counter (CPC) as
well as for the transfer function of the DMA. Further details
about the measurement campaign, techniques and conditions
are given by Massling et al. (2009).

The curves in Fig. 1 indicate a bimodal hygroscopicity
distribution for both 80 nm and 150 nm particles. The val-
ues ofH(κ,Dd) at the lower end of the distribution curves
are≈ 0.2, implying that≈ 20% of the mono-disperse parti-
cles haveκ values<0.01. These particles are most likely ex-
ternally mixed soot particles freshly emitted from strong lo-
cal combustion sources, which are characteristic for polluted
air in Chinese megacity regions (e.g., Garland et al., 2008,
2009; Cheng et al., 2009; Massling et al., 2009; Wehner et
al., 2009; Rose et al., 2010a, b, c). The steep increase of
H(κ,Dd) aroundκ ∼ 0.2 indicates a lognormal mode in the
hygroscopicity distribution (lognormal fits yieldR2 of 0.99),
which can be tentatively explained by internally mixed par-
ticles consisting of varying amounts of sulfates, nitrates, or-
ganics and aged soot (Massling et al., 2009; Wiedensohler et
al., 2009; Rose et al., 2010a, b, c).

Equation (18) has already been used in earlier studies (Pet-
ters and Kreidenweis, 2007; Petters et al., 2009b; Wex et al.,
2009), and the derivation ofH(κ,Dd) from HTDMA data
will not be further discussed in this paper. Hygroscopicity
distributions derived from HTDMA data can be further ana-
lyzed and plotted as illustrated below for CCN data (Sects. 3
and 4).

2.3 CCN data analysis

Cloud condensation nuclei (CCN) are particles that can be
activated to form cloud droplets at a given water vapor su-
persaturationS, which is usually reported in percent (S =
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surements performed in Beijing (one-day average for 12 June 2004). The dry particle diameters selected by the

first DMA were 80 nm and 150 nm, further details can be found in the work of Massling et al. (2009).
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Fig. 1. Cumulative particle hygroscopicity distributionsH(κ,Dd)

calculated from exemplary HTDMA measurements performed in
Beijing (one-day average for 12 June 2004). The dry particle di-
ameters selected by the first DMA were 80 nm and 150 nm, further
details can be found in the work of Massling et al. (2009).

(s −1) ·100%). In field and laboratory studies, it is custom-
ary to measure the concentration of CCN with a cloud con-
densation nucleus counter (CCNC), while the total concen-
tration of aerosol particles is measured with other types of
condensation nucleus counters (CNC) or condensation par-
ticle counters (CPC), respectively. Thus, the index CN and
the term CN concentration are often used for the total aerosol
particle concentration, and we adopt this terminology in the
present paper.

The cumulative size distribution functions of CCN and
CN, NCCN(S,Dd) and NCN(Dd), are defined as the num-
ber concentrations of CCN (atS) and CN smaller thanDd,
respectively (Sect. 2.1.2; Seinfeld and Pandis, 2006). Dif-
ferentiation ofNCCN(S,Dd) andNCN(Dd) for the dry par-
ticle diameterDd yields the corresponding PDFs of the
CCN and CN size distributions:∂NCCN(S,Dd)/∂Dd and
dNCN(Dd)/dDd. Note that the PDF of the CN size distri-
bution is a simple derivative because the corresponding CDF
depends only onDd, whereas the PDF of the CCN size distri-
bution is a partial derivative because the corresponding CDF
depends onDd andS. For every combination ofS andDd,
the number ratio of CCN/CN is given by the ratio of the cor-
responding size distribution functions:

∂NCCN(S,Dd)

∂NCN(Dd)
=

(
∂NCCN(S,Dd)

∂Dd

)
/

(
dNCN(Dd)

dDd

)
(20)

Size-resolved CCN measurements can provide
data of ∂NCCN(S,Dd)/∂NCN(Dd), or in practice
1NCCN(S,Dd)/1NCN(Dd) as a function of dry parti-
cle diameter and water vapor supersaturation. In such
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measurements, monodisperse dry aerosol particles with
a diameterDd are usually selected by a DMA, and the
monodisperse aerosol is fed into a CCNC and into a CPC
operated in parallel to measure the number concentra-
tions of CCN (1NCCN(S,Dd)) and of CN (1NCN(Dd)),
respectively (e.g., Rose et al., 2008, 2010a). Note that
different studies have used different terms for the quantity
∂NCCN(S,Dd)/∂Dd, including the terms: activated particle
fraction, CCN efficiency, or CCN efficiency ratio (e.g.,
Dusek et al., 2006; Frank et al., 2006; Kuwata et al., 2008;
Rose et al., 2008, 2010a, b, c; Moore et al., 2009; Petters et
al., 2009a; Wex et al., 2009; and references therein).

The size-resolved CCN efficiency∂NCCN(S,Dd)/
∂NCN(Dd) is the number fraction of particles with a dry
diameterDd that are activated at a supersaturationS. Ac-
cording to theκ-Köhler theory, particles activated at a given
combination of S and Dd have effective hygroscopicity
parameters that are equal or larger than a critical valueκc.
Thus,∂NCCN(S,Dd)/∂NCN(Dd) can be regarded as the frac-
tion of particles withκ ≥ κc, which is complementary to the
fractional CDF of particle hygroscopicity,H(κc(S,Dd),Dd)

(fraction of particles withκ < κc):

H(κc(S,Dd),Dd) = 1−
∂NCCN(S,Dd)

∂NCN(Dd)
(21)

The critical hygroscopicity parameter valueκc is a func-
tion of S andDd. The general relation betweenκ, S, and
Dd is given by Eq. (17) withs = 1+S/(100%), and for any
given pair of parameter values the critical value of the third
parameter can be determined by numerical calculation of the
maximum point in the corresponding Köhler model curve of
CCN activation (Rose et al., 2008). For example,κc can be
determined by fixingDd and varying bothκ andDw until S

equals both the prescribed value and the maximum value in
the Köhler curve. Alternatively, the critical parameter values
κc, Dd,c andSc can be approximated as follows (Petters and
Kreidenweis, 2007, Rose et al., 2008):

κc(S,Dd) ≈
4A3

27D3
d ln2(1+S/(100%))

with A =
σsolMw

RTρw

andσsol= σw (22)

Dd,c(κ,S)≈
3

√
4A3

27κ ln2(1+S/(100%))
(23)

Sc(κ,Dd) ≈

(
exp

(√
4A3

27κD3
d

)
−1

)
100% (24)

For CCN measurements at a fixed dry particle sizeDd,
a given value ofS corresponds to a specific value ofκc
(Eq. 22), and every data point of∂NCCN(S,Dd)/∂NCN(Dd)

yields a value ofH(κc,Dd) (Eq. 21). To obtain the complete
distribution functionH(κ,Dd) for a given particle sizeDd,
S can be varied so thatκc covers the whole relevant range

of κ. By applying the same procedure for particles at other
Dd, a complete representation ofH(κ,Dd) over theDd−κ

plane can be obtained. The approach of keepingDd constant
and varyingS, then selecting another value ofDd and iter-
ating the procedure, has been adopted in some size-resolved
CCN measurement studies (e.g., Dusek et al., 2006; Frank et
al., 2006; Moore et al., 2009; Snider et al., 2010) and will be
called method I or “S scan” in the following. Alternatively,S
can be kept constant while varyingDd, before another value
of S is selected and the procedure is iterated (e.g., Kuwata
et al., 2008; Rose et al., 2008, 2010a; Gunthe et al., 2009;
Petters et al., 2009a; Wex et al., 2009), which will be called
method II or “Dd scan”.

Figure 2 illustrates the two different approaches that can
be taken to determineH(κ,Dd) by size-resolved CCN mea-
surements. Each line represents one measurement cycle. The
vertical dashed lines correspond to method I (“S scan” at
constantDd), and the tilted solid lines correspond to method
II (“ Dd scan” at constantS).

In principle, the two methods are equivalent with regard
to probing the surface ofH(κ,Dd) over theDd−κ plane.
In method I, each scan yields a complete hygroscopicity
distribution of particles with the same dry diameter. In
method II, the data points of a measurement scan give val-
ues ofH(κ,Dd) for particles with different dry particle di-
ameters. When we calculate the derivative ofH(κ,Dd) with
respect toκ within each scan, method I gives a partial deriva-
tive ∂H(κ,Dd)/∂κ while method II gives a total derivative
dH(κ,Dd)/dκ. The relation between the total derivative at
constantS and the partial derivative at constantDd is given
by:

dH(κ,Dd)

dκ
=

∂H(κ,Dd)

∂κ
+

∂H(κ,Dd)

∂Dd

(
dDd

dκ

)
S

(25)

The term(dDd/dκ)S can be approximated by differentiat-
ing Eq. (23):(

dDd

dκ

)
S

= −
1

3

Dd

κ
(26)

By combination of Eqs. (24) and (25), and multiplication
with κ, we obtain

dH(κ,Dd)

dκ
=

∂H(κ,Dd)

∂κ
−

1

3

Dd

κ

∂H(κ,Dd)

∂Dd
(27)

and

dH(κ,Dd)

d lnκ
=

∂H(κ,Dd)

∂ lnκ
−

1

3

∂H(κ,Dd)

∂ lnDd
(28)

or

dH(κ,Dd)

d logκ
=

∂H(κ,Dd)

∂ logκ
−

1

3

∂H(κ,Dd)

∂ logDd
(29)
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Fig. 2. Alternative methods of probing particle hygroscopicity
distributions,H(κ,Dd), by size-resolved CCN measurements: (1)
method I or “S scan” is represented by vertical dashed lines, in
which the dry particle diameterDd is first kept constant and the
water vapor supersaturationS is varied, then choosing anotherDd
and repeating the same procedure; (2) method II or “Dd scan” is
represented by the tilted solid lines, in whichS is first kept constant
andDd is varied, then choosing anotherS and repeating the same
procedure.

Recalling the definition of the PDFs of particle hygroscop-
icity, h(κ,Dd), he(κ,Dd) andh10(κ,Dd) (Eqs. 1 to 3), we can
rewrite Eqs. (27), (28) and (29) as follows:

h(κ,Dd) =
dH(κ,Dd)

dκ
+

1

3

Dd

κ

∂H(κ,Dd)

∂Dd
(30)

he(κ,Dd) =
dH(κ,Dd)

d lnκ
+

1

3

∂H(κ,Dd)

∂ lnDd
(31)

and

h10(κ,Dd) =
dH(κ,Dd)

d logκ
+

1

3

∂H(κ,Dd)

∂ logDd
(32)

As outlined above, method I with “S scan” at constantDd
directly leads toh(κ,Dd) and he(κ,Dd) or h10(κ,Dd), re-
spectively. In contrast, the measurement results of method II
(“Dd scan” at constantS) have to be combined with infor-
mation about the size dependence ofH(κ,Dd) to calculate
the h(κ,Dd)s and characteristic hygroscopicity distribution
parameters for a given particle size.

As indicated by Eq. (32) and discussed below (Sect. 4.1),
h10(κ,Dd) can be approximated by the total deriva-
tive dH(κ,Dd)/d logκ provided that H(κ,Dd) exhibits
no strong size dependence, i.e.,|∂H(κ,Dd)/∂ logDd| �

|∂H(κ,Dd)/∂ logκ|, which is likely to be the case under most
atmospheric conditions.

Overall, the results of method I appear easier to inter-
pret and compare directly with size-resolved data of aerosol
chemical composition. Nevertheless the following discus-
sions will be mostly focused on method II, because many of
the recently reported size-resolved CCN field measurements
used this approach (varyingDd at a constantS).

For completeness, we also give the equation which cal-
culates the total CCN concentration atS, NCCN(S,Dd →

∞), from the particle hygroscopicity and size distribution,
H(κ,Dd) andn(Dd) :

NCCN(S,Dd → ∞)=

∞∫
0

n(Dd)(1−H(κc(S,Dd),Dd))dDd (33)

Note that Eq. (33) is equivalent to the approach of cal-
culating CCN number concentrations in experimental stud-
ies applying method II (e.g. Gunthe et al., 2009; Rose et al.,
2010a), because the term(1−H(κc(S,Dd),Dd)) is the mea-
sured CCN efficiency spectra.

2.4 Uncertainties and validation

Uncertainties in the determination ofH(κ,Dd) from HT-
DMA and CCN measurement data are directly related
to experimental uncertainties in the determination of
F(Dw,Dd,s) and1NCCN(S,Dd)/1NCN(Dd), respectively.
The experimental uncertainties depend on various factors
like instrument calibration, counting statistics, correction
factors, and data inversion techniques (counting efficiency,
electric charge, DMA transfer function, particle shape, etc.;
Rissler et al., 2006; Rose et al., 2008; Swietlicki et al., 2008;
Massling et al., 2009; Mikhailov et al., 2009; Kammermann
et al., 2010; Snider et al., 2010).

As demonstrated by Rose et al. (2008), CCN measure-
ments require careful calibration to achieve relative uncer-
tainties< 10% forS, corresponding to relative uncertainties
< 20% forκ (∂ lnκc/∂ lnS ≈ −2, in analogy to the sensitivity
given in Kreidenweis et al., 2009). Especially at low super-
saturation (S ≤ 0.1%), inappropriate calibration techniques
can lead to relative errors> 40% inS and larger errors inκ.

Moreover, κ values determined by HTDMA measure-
ments can be different fromκ values determined by CCN
measurements, because of the general dependence ofκ and
equivalent hygroscopicity parameters (van’t Hoff factor and
osmotic coefficient) on solute concentrations (Mikhailov et
al., 2004, 2009; Rose et al., 2008; Reutter et al., 2009) and
potential solubility effects (Petters and Kreidenweis, 2007).

Thus, the uncertainty, applicability, and extrapolation of
hygroscopicity distributions determined by HTDMA or CCN
measurements depend on the ambient and experimental con-
ditions and on the quality of the measurement data (e.g.,
Rissler et al., 2006; Svenningson et al., 2006; Vestin et al.,
2007; Gunthe et al., 2009; Petters et al., 2009a; Wex et al.,
2009).
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For comparison and validation, hygroscopicity distribu-
tions can be calculated as a function of relative humidity,
if the chemical composition and mixing state of the particle
population as well as the hygroscopic properties and interac-
tions of the chemical components are known or can be es-
timated reasonably well. Simple mixing rules or advanced
models can be used for such purposes, and the effects of
concentration-dependent changes in water activity, surface
tension or partial molar volumes can be resolved explicitly.
Thus, accurate parallel measurements of aerosol chemical
composition, mixing state and hygroscopicity distributions
should enable mutual validation of experimental and model
results (closure). A more detailed discussion of these aspects
would go beyond the scope of the present manuscript, which
is aimed at introducing and illustrating the general concept of
aerosol hygroscopicity distribution, but it should be pursued
in follow-up studies.

3 CCN efficiency spectra calculated from model
hygroscopicity distributions

In this section, we show how different hygroscopicity dis-
tributions are reflected in the CCN efficiency spectra (ac-
tivation curves) of size-resolved CCN measurements. We
consider three hypothetical model scenarios with different
aerosol mixing states and lognormal distribution functions
H(κ,Dd) (Cases A–C, Table 1) and calculate the correspond-
ing activation curves for “Dd scan” at constantS (method II).
Different terms and attributes have been used to describe the
mixing state of aerosols. Here we use the attribute “internally
mixed” not only for an aerosol in which all particles have
the exact same composition and properties (Case A, perfect
internal mixing), but also for particles with a continuum of
similar compositions and properties, i.e., for an aerosol with
a single lognormal mode ofκ (Case B, imperfect internal
mixing). The attribute “externally mixed” is used for pro-
nouncedly different types of particles, e.g., for aerosols with
two distinct lognormal modes ofκ (Case C, external mixing).

3.1 Perfect internally mixed aerosol (Case A)

In Case A, the aerosol was assumed to be perfectly well in-
ternally mixed, i.e., all particles have the same composition
and hygroscopicity. This scenario corresponds to a mono-
disperse distributionH(κ,Dd) of the formH(κ < 0.2,Dd) =

0 andH(κ ≥ 0.2,Dd) = 1. Ideal CCN measurements with
“Dd scan” atS=0.86%, 0.26% and 0.067% would yield ac-
tivation curves in the form of perfect step functions as shown
in Fig. 3 (blue lines). All particles would be activated above
and none would be activated below the critical dry diame-
ter (Dd,c), which is given by Eq. (23). Note that such step
functions could be observed only under ideal conditions (per-
fect particle generation, measurement, and data analysis).
In practice, the experimental uncertainties mentioned above

Table 1. Lognormal hygroscopicity distribution parameters for
model aerosols (Cases A to C, Eq. 16)

Mode I Mode II
a1 κg,1 σκ,g,1 a2 κg,2 σκ,g,2

Case A 1 0.2 1 – – –
Case B 1 0.2 1.6 – – –
Case C 0.8 0.2(Dd/20nm)0.4 1.6 0.2 0.05 1.1

(particle shape and charge effects, DMA transfer function,
inhomogeneities ofT and RH, etc.) will result in some dis-
persion even for pure calibration aerosols (Rose et al., 2008;
Svenningsson et al., 2008; Mikhailov et al, 2009; Snider et
al., 2010; and references therein).

3.2 Imperfect internally mixed aerosol with a singleκ

mode (Case B)

In Case B, we assumed an aerosol with a non-size-dependent
κ distribution consisting of a single lognormal mode with
a(Dd) = 1, κg(Dd) = 0.2 andσκ,g(Dd) = 1.6 (Eq. 16, Ta-
ble 1). The corresponding PDF of particle hygroscopicity,
h10(κ,Dd) is illustrated in Fig. 4a. Size-resolved CCN mea-
surements with “Dd scan” atS=0.86%, 0.26%, and 0.067%
(tilted black lines in Fig. 4a), would yield activation curves
in the form of lognormal CDFs as shown in Fig. 3 (green
curves).

3.3 Externally mixed aerosols with twoκ modes
(Case C)

In Case C, we assume an externally mixed aerosol with two
lognormally distributed modes ofH(κ,Dd) (Table 1). For
mode 1, the values ofκg,1 was the same as in Case B at
Dd = 20 nm, but with increasing particle diameter we pre-
scribed an increase of the geometric mean value ofκ as
κg,1(Dd)=0.2(Dd/20 nm)0.4. Theσκ,g,1 was set to 1.6 for
all Dd. For mode 2, we assumed non-size-dependent val-
ues ofκg,2=0.05 andσκ,g,2=1.1. The corresponding PDF
of particle hygroscopicity,h10(κ,Dd) is illustrated in Fig.
4b. Size-resolved CCN measurements with “Dd scan” at
S=0.86%, 0.26%, and 0.067% (tilted black lines in Fig. 4b),
would yield activation curves in the form of two-mode log-
normal CDFs as shown in Fig. 3 (red curves). Similar CCN
efficiency spectra have been recorded in polluted megacity
air (Sect. 4.2, Rose et al., 2010a).

4 Retrieval of hygroscopicity distributions from CCN
efficiency spectra

In this section, we show how CDFs and PDFs of particle hy-
groscopicity can be retrieved from CCN efficiency spectra
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Fig. 3. CCN efficiency spectra (activation curves) of hypothetical
model aerosols. Each line represents the spectrum of one type of
mode aerosol (Case A, B, or C as specified in Table 1) obtained by
Dd scans at a fixed supersaturationS. The supersaturation levels
areS1=0.86%,S2=0.26%, orS3=0.067%.

obtained by method II (“Dd scan” at constantS). We con-
sider the three hypothetical model scenarios discussed above,
as well as measurement data from recent field campaigns.
Moreover, we address the difference between partial and to-
tal derivatives of the hygroscopicity distribution obtained by
methods I and II, and we demonstrate the applicability of log-
normal distribution functions for the fitting of measurement
data.

4.1 Modeled CCN efficiency spectra and differences
between methods I and II

To derive the cumulative hygroscopicity distribution
H(κ,Dd) from a CCN efficiency spectrum observed at
constantS (activation curve of “Dd scan” in method II),
Eqs. (20) and (21) can be used to convert every value
of ∂NCCN/∂NCN(S,Dd) into a corresponding value of
H(κc,Dd). Fig. 5 shows a plot ofH(κ,Dd) vs. κ that
corresponds to the plot of∂NCCN/∂NCN(S,Dd) vs. Dd in
Fig. 3. For each of the non-size-dependent hygroscopicity
distributions assumed in Case A and B, the CCN efficiency
spectra observed at different supersaturations converge
into a single curve ofH(κ,Dd) vs. κ: a step function
for the perfectly mixed aerosol (Case A) and monomodal
lognormal CDF for the imperfectly internally mixed aerosol
(Case B). The same applies to the non-size-dependent low
hygroscopicity mode in Case C (mode 2 withκg,2=0.05).
For the size-dependent mode 1, however, we obtain different
curves at different supersaturations (red dotted, dashed, and
solid lines aroundκ ∼ 0.3). The different midpoint values
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Fig. 4. Logarithmic probability distributions of particle hygroscop-
icity, h10(κ,Dd) = ∂H(κ,Dd)/∂ logκ, plotted over effective hygro-
scopicity parameter (κ) and dry particle diameter (Dd) for model
aerosols of Case B(a) and of Case C(b). The tilted black lines in-
dicateDd scans at fixed supersaturations (S1=0.86%,S2=0.26%,
S3=0.067%).

of the CDF curves of mode 1 (κ ∼ 0.25−0.45), correspond
to the different intersections of the “Dd scan” at constantS
(black tilted lines) with the maximum of the PDF ofκ in
Fig. 4b (center of red bar).

As outlined above, methods I and II are different ways of
probingH(κ,Dd). If H(κ,Dd) is not size-dependent, distri-
bution plots ofH(κ,Dd) vs. κ obtained by “S scan” at con-
stantDd (method I) or by “Dd scan” at constantS (method II)
are the same. If, however,H(κ,Dd) is size-dependent, differ-
ences are expected. For Case C, we compare the CDF curves
of H(κ,Dd) vs.κ obtained by method II atS1−S3 (red lines
in Figs. 5 and 6a) with the CDF curves ofH(κ,Dd) vs.κ ob-
tained by method I atDd,1−Dd,3 (black lines in Fig. 6a). The
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Fig. 5. Cumulative particle hygroscopicity distributions,H(κ,Dd),
calculated from the CCN efficiency spectra of hypothetical case
study aerosols (Fig. 3). Each line represents the cumulative dis-
tribution of one type of model aerosol (Case A, B, or C, as speci-
fied in Table 1 and Fig. 4) at a fixed supersaturationS (S1=0.86%,
S2=0.26%,S3=0.067%). The three blue (or green) lines at differ-
entS converge into a single curve.

three diameter valuesDd,1 −Dd,3 were calculated by solv-
ing Eq. (23) withκ = κg,1(Dd)=0.2(Dd/20 nm)0.4 for the
supersaturation valuesS1 −S3. They correspond to the in-
tersections of the “Dd scan” at constantS (black tilted lines)
with the maximum of the PDF ofκ for mode 1 in Fig. 4b
(center of red bar).

The results of method I are exactly the same for the non-
size-dependent low hygroscopicity mode (mode 2), but for
the size-dependent mode 1 they are slightly different from
method II. While the modal values ofκ remain the same,
method I yields a wider spread ofH(κ,Dd) vs. κ. Accord-
ingly, the corresponding peak in the logarithmic PDFs shown
in Fig. 6b are a little wider and lower for method I (par-
tial derivative,∂H(κ,Dd)/∂ logκ) than for method II (total
derivative,dH(κ,Dd)/d logκ). Considering other potential
uncertainties related to measurement techniques and condi-
tions, however, the mathematical deviations between partial
and total derivative appear relatively minor (Sect. 2.4).

Of course the differences between methods I and II de-
pend on the form of the probed hygroscopicity distribution.
For example, the spread of the distribution obtained with
method I would be smaller than that of method II if the hy-
groscopicity increased with size, and the differences would
be larger if the size-dependence were stronger. Thus, the re-
sults of the above sensitivity study for a specific model sce-
nario should not be over-generalized. Considering, however,
that the size-dependencies observed in recent field studies
seem to be comparable and not much larger than assumed in
the model scenario, we suggest that for atmospheric aerosols
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Fig. 6. Cumulative particle hygroscopicity distributions,H(κ,Dd)

(a), and corresponding logarithmic probability distributions,
∂H(κ,Dd)/∂ logκ or dH(κ,Dd)/d logκ (b), for the model aerosol
of Case C obtained by method I (“S scan” at Dd,1, Dd,2 or
Dd,3) and method II (“Dd scan” at S1=0.86%, S2=0.26% or
S3=0.067%).

the logarithmic hygroscopicity PDFs obtained with method
II (dH(κ,Dd)/d logκ) may be well suited to approximate the
ones obtained with method I (h10= ∂H(κ,Dd)/∂ logκ).

4.2 Measured CCN efficiency spectra and lognormal
fitting

To test and illustrate the practical applicability of theκ distri-
bution concept, we applied it to size-resolved CCN measure-
ment data of polluted megacity air from the CAREBeijing-
2006 campaign in Beijing, China. The CCN measurements
were performed at the Yufa site in the southern outskirts of
Beijing, roughly 50 km away from the urban center in Bei-
jing (39.51◦ N, 116.31◦ E) over the period of 10 August to
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Fig. 7. Average CCN efficiency spectra for the CAREBeijing-2006
campaign (10 August to 8 September 2006, Yufa, Beijing, China).
The data points and error bars represent arithmetic mean values±

one standard deviation. Note that the experimental uncertainties (<

10%, Rose et al., 2010a) were smaller than the temporal variability
of the measurement data as indicated by the error bars.

8 September 2006. Details about the measurement location
and conditions are reported by Garland et al. (2009) and
Wiedensohler et al. (2009). The size-resolved CCN mea-
surements were performed following method II (“Dd scan”
at constantS), and the data were recorded and processed as
detailed by Rose et al. (2010a), except that the DMA trans-
fer function correction was not applied, because it is based
on the assumption of perfect internal mixing (Sect. 2.3.1.3 in
Rose et al., 2008).

Figure 7 shows the campaign average and variability of
CCN efficiency spectra observed at the five investigated su-
persaturation levels (S = 0.067% to 0.86%), and Fig. 8a
shows the corresponding cumulative hygroscopicity distribu-
tions,H(κ,Dd), obtained through Eqs. (21) and (22).

Comparison of the measurement-derived CDFs of
H(κ,Dd) in Fig. 8a with the model scenarios in Fig. 5 sug-
gests a size-dependent, imperfectly internally mixed mode
aroundκ ∼ 0.4, similar to mode 1 in Case C.

The data also indicate a small but significant fraction of
particles with very low hygroscopicity (≈ 10%, κ < 0.1).
These are most likely externally mixed soot particles freshly
emitted from strong local and regional sources (Cheng et al.,
2009; Garland et al., 2009; Wehner et al., 2009; Rose et al.,
2010a). They may be regarded as a low hygroscopicity mode
analogous to mode 2 in Case C, but the dispersion ofκ val-
ues appears to be much wider. The range and resolution of
measurement data was not sufficient to cover and resolve this
low hygroscopicity mode.
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Fig. 8. Average cumulative particle hygroscopicity distributions,
H(κ,Dd) (a) corresponding to the CCN efficiency spectra (Fig. 7)
observed in the CAREBeijing-2006 campaign. The color lines in
(a) are the fitted curves in the form of Eq. (34) to the correspond-
ing measurement data points (of the same color). The logarithmic
probability distributions,dH(κ,Dd)/d logκ in (b) were calculated
from the fitted curves shown in (a).

For size-resolved CCN measurements, the lower limitκml
of the hygroscopicity parameter range covered by each scan
is determined by the corresponding upper limit values of wa-
ter vapor supersaturationSmax (method I) or dry particle di-
ameter,Dd,max (method II):κml = κc(Smax,Dd) (method I) or
κml = κc(S,Dd,max) (method II). If all particles withκ > κml
are assumed belonging to a single-mode lognormal hygro-
scopicity distribution function (imperfect internal mixture),
the following modified version of Eq. (16) can be used to fit
measurement-derived data ofH(κ,Dd):
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Table 2. Lognormal hygroscopicity distribution fit parameters for
the CAREBeijing-2006 field campaign data (Eq. 34 and Fig. 8).
The goodness of the least-squares fit is indicated by the coefficient
of determination (R2) and the root mean square error (RMSE);κml
is the lower limit of the hygroscopicity parameter range covered by
measurement data.

a κg σκ,g R2 RMSE κml

S=0.067% 0.78 0.56 1.38 0.995 0.028 0.149
S=0.26% 0.90 0.47 1.67 0.995 0.033 0.011
S=0.46% 0.94 0.38 1.60 0.994 0.034 0.003
S=0.66% 0.95 0.31 1.77 0.992 0.043 0.002
S=0.86% 0.97 0.30 1.74 0.994 0.034 0.001

Table 3. Acronyms

Symbol Description

CCN Cloud condensation nuclei
CDF Cumulative distribution function
CN Condensation nuclei
CPC Condensation particle counter
DMA Differential mobility analyzer
HTDMA Hygroscopicity tandem differential mobility analyzer
PDF Probability distribution function
RMSE Root mean square error
SP2 Single-particle soot photometer
SPMS Single particle mass spectrometers
STEM Scanning and transmission electron microscopes
VTDMA Volatility tandem differential mobility analyzer

H(κ,Dd) = (1−a)+a(
1

2
+

1

2
erf(

logκ − logκg
√

2logσκ,g

))

= 1−
a

2
+

a

2
erf(

logκ − logκg
√

2logσκ,g

) (34)

Herea is the number fraction of particles in the fit single
mode,κg is the geometric meanκ of the fit mode andσκ,g is
the geometric standard deviation ofκ for the fit mode.

The best fit parameters of Eq. (34) to the average aerosol
hygroscopicity distributions are listed in Table 2 and plot-
ted in Fig. 8a. During the CAREBeijing-2006 campaign,
over 95% of the∼1536 individual distributionsH(κ,Dd)

recorded could be fitted withR2>0.8 by Eq. (34). Similarly
good fitting results were obtained with size-resolved CCN
measurement data from other recent field campaigns investi-
gating polluted megacity air (PRD2006, Rose et al., 2010a)
as well as pristine rainforest air (AMAZE-08, Gunthe et al.,
2009). Thus, Eq. (34) appears suitable for an approximate
description of atmospheric aerosol hygroscopicity distribu-
tions. Nevertheless, other fit functions such as normal or
Gamma distributions, power laws, etc. (Deirmendjian, 1969;

(a)

(b)

(c)

Fig. 9. Average logarithmic probability distributions of particle hy-
groscopicity,dH(κ,Dd)/d logκ, plotted over effective hygroscopic-
ity parameter (κ) and dry particle diameter (Dd) for CAREBeijing-
2006(a), PRD2006(b) and AMAZE-08(c). ThedH(κ,Dd)/d logκ

curves from the Fig. 8b were interpolated over theDd – κ plane by
using a 2-D triangle-based linear interpolation method.

Pruppacher and Klett, 1997; Seinfeld and Pandis, 2006) or
multiple lognormal modes may be equally or better suited de-
pending on aerosol composition and the range and resolution
of measurement data, which should be explored in futures
studies.

Differentiating H(κ,Dd) (the CDFs) by logκ yields the
corresponding PDFsdH(κ,Dd)/d logκ as shown in Fig. 8a
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Table 4. Symbols

Symbol Unit Quantity

ai(Dd) Number fraction of theith fit mode in a lognormal distribution fit toH(κ,Dd) atDd
Dd m (unless specified) Dry particle diameter
Dd,c m (unless specified) Critical dry particle diameter
Dw m (unless specified) Wet particle diameter
F(Dw,Dd,s) Number fraction of particles of dry sizeDd with equilibrated wet diameter smaller thanDw at s
H(κ,Dd) Cumulative particle hygroscopicity distribution function
h(κ,Dd) Particle hygroscopicity (probability) distribution function with respect toκ

he(κ,Dd) Particle hygroscopicity (probability) distribution function with respect to lnκ

h10(κ,Dd) Particle hygroscopicity (probability) distribution function with respect to logκ

Mw kg mol−1 Molar mass of water
N(Dd) cm−3 Cumulative particle size distribution function
NCCN(S,Dd) cm−3 CCN (atS) number concentration of particles smaller thanDd
NCN(Dd) cm−3 CN number concentration of particles smaller thanDd
n(Dd) m−1 cm−3 Particle size distribution function with respect toDd
R J K−1 mol−1 Universal gas constant
RH % Relative humidity
T K Temperature
S % Water vapor supersaturation
Sc % Critical water vapor supersaturation
s Water vapor saturation ratio
sc Critical water vapor saturation ratio
κ Effective hygroscopicity parameter
κc Critical effective hygroscopicity parameter
κml Lower measurement limit for the size resolved CCN measurements
κmed(Dd) Medianκ for particles of sizeDd
κmode(Dd) Local maximum of theh(κ,Dd) distribution for particles of sizeDd
κ(Dd) Arithmetic meanκ for particles of sizeDd
κg(Dd) Geometric meanκ for particles of sizeDd
κg,i(Dd) Geometric meanκ of theith fit mode in a lognormal distribution fit toH(κ,Dd) atDd
ρw kg m−3 Density of pure water
σsol J m−2 Surface tension of solution droplet
σw J m−2 Surface tension of pure water
σκ (Dd) Standard deviation ofκ for particles of sizeDd
σκ,g(Dd) Geometric standard deviation ofκ for particles of sizeDd
σκ,g,i(Dd) Geometric standard deviation ofκ of theith fit mode in a lognormal distribution fit toH(κ,Dd) atDd

and 8b. Interpolation between the PDFs observed at different
supersaturations yields an approximate representation of the
distribution of the particle mode withκ ≥ κml in the Dd−κ

plane as shown in Fig. 9a. Similar to the more hygroscopic
mode 1 in the model scenario Case C (Fig. 4b), the modalκ

value tends to increase withDd.
Besides the CAREBeijing-2006 campaign, the same ap-

proach was also successfully applied to other data sets. For
example, Fig. 9b shows a similar PDF of particle hygro-
scopicity obtained from size-resolved CCN measurements
in polluted megacity air and biomass burning smoke near
Guangzhou, China (PRD2006 campaign, 1–30 July 2006;
Rose et al., 2010a); and Fig. 9c illustrates a PDF of particle
hygroscopicity for pristine rainforest air measured in Brazil
(AMAZE-08, 14 Feburary–12 March 2008; Gunthe et al.,
2009).

As outlined above, when we applied modified single-mode
lognormal distribution function (Eq. 34) for the fitting of the
size-resolved CCN field measurement data sets, the distribu-
tion information withκ < 0.1 can not be retrieved because
of the lowκ resolution or the detection limitκml. Thus, the
interpolated PDFs shown in Fig. 9a provide no information
about the low hygroscopicity particle mode. To avoid any
misinterpretation, we limit the contour plot area toκ ≥ 0.1.

Size-resolved CCN measurements with a higher range and
resolution ofS andDd would be required to resolve the ex-
ternally mixed low hygroscopicity mode. Alternatively or in
addition, such information could be obtained from HTDMA
measurement data, which were not available for the CCN
data sets presented in Fig. 9. For a comprehensive charac-
terization of aerosol particle hygroscopicity distributions in
future studies we recommend a combination of size-resolved
CCN measurements with a large range and high resolution
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of S and Dd (e.g. Moore et al., 2009, 2010) in combi-
nation with HTDMA measurements and detailed measure-
ments of aerosol composition including refractory compo-
nents (STEM, SPMS, VTDMA, etc.; for acronyms and sym-
bols, refer to Tables 3 and 4).

5 Conclusions

In this study, a general concept of aerosol particle hygro-
scopicity distribution was introduced and related to HTDMA
and size-resolved CCN measurements. Model aerosols were
used to illustrate the concept, and its practical applicability
was demonstrated with exemplary HTDMA and CCN field
measurement data. The main conclusions are as follows:

(1) Cumulative hygroscopicity distribution functions
(CDF), H(κ,Dd), can be derived from HTDMA
and size-resolved CCN measurements. With the
help of single particle analysis techniques, it should
also be possible to predictH(κ,Dd) from chemical
composition data.

(2) Differentiation of H(κ,Dd) by d logκ yields the cor-
responding logarithmic probability distribution func-
tion (PDF). Depending on the technique applied for
size-resolved CCN measurements (“S scan” or “Dd
scan”), the PDF corresponds to a partial deriva-
tive (∂H(κ,Dd)/∂ logκ) or to a total derivative
(dH(κ,Dd)/d logκ). The partial derivative obtained
from an “S scan” represents the hygroscopicity distri-
bution at a fixed particle size and is easier to interpret
and compare directly with size-resolved data of aerosol
composition than the total derivative obtained from a
“Dd scan”. If H(κ,Dd) exhibits no strong size depen-
dence, which appears likely for most atmospheric con-
ditions, the partial derivative can be approximated by
the total derivative.

(3) Lognormal distribution functions were found to be suit-
able for approximately describing the hygroscopicity
distribution of aerosols in polluted megacity air as
well as in pristine rainforest air as determined by size-
resolved CCN measurements.

(4) For detailed characterization of aerosol hygroscopic-
ity distributions, including externally mixed particles
of low hygroscopicity such as freshly emitted soot, we
suggest that size-resolved CCN measurements with a
wide range and high resolution of water vapor supersat-
uration and dry particle diameter should be combined
with comprehensive HTDMA measurements and size-
resolved or single-particle measurements of aerosol
chemical composition, including refractory compo-
nents.

(5) In field and laboratory experiments, hygroscopicity dis-
tribution data from HTDMA and CCN measurements
can complement mixing state information from op-
tical, chemical and volatility-based techniques (SP2,
STEM, SPMS, VTDMA, etc.). Moreover, we propose
and intend to use hygroscopicity distribution functions
in model studies investigating the influence of aerosol
mixing state on the formation of cloud droplets.
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Köhler, H.: The nucleus in the growth of hygroscopic droplets, T.
Faraday Soc., 32, 1152–1161, 1936.

Massling, A., Stock, M., Wehner, B., Wu, Z. J., Hu, M.,
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