10 research outputs found

    A global HILIC-MS approach to measure polar human cerebrospinal fluid metabolome: Exploring gender-associated variation in a cohort of elderly cognitively healthy subjects.

    No full text
    Cerebrospinal fluid (CSF) is a key body fluid that maintains the homeostasis in central nervous system (CNS). As a biofluid whose content reflects the brain metabolic activity, the CSF has been profiled in the context of neurological diseases to provide novel insights into the disease mechanisms. However, a global high-throughput approach to measure a broad diversity of polar metabolites present in CSF is lacking. Although still perceived as challenging and less reproducible, hydrophilic interaction liquid chromatography (HILIC) has recently evolved to offer the unprecedented coverage capacity of water-soluble metabolome. Here, we present a global HILIC high-resolution mass spectrometry-based (HRMS) approach that combines the profiling in acidic pH ESI (+) and basic pH ESI (-) mode to extend the coverage of CSF polar metabolome. This approach allowed us to annotate and measure a broad range of central carbon metabolites (implicated in glycolysis, TCA cycle, nucleotide, amino acid and fatty acid metabolism) in CSF collected from cognitively healthy elderly volunteers (n = 32), using a single extraction method. Metabolite annotation was achieved using the accurate mass, RT and MS/MS criteria, allowing for the characterization of 146 measurable metabolites. Exploration of characterized individual CSF profiles allowed for a discovery of intriguing gender-associated differences, with significantly higher acylcarnitine levels in men and higher taurine levels women. With this case study, we demonstrate the value of combined HILIC ESI ± HRMS profiling to assess CSF metabolome in clinical research studies

    Metabolomics analysis identifies different metabotypes of asthma severity

    No full text
    In this study, we sought to determine whether asthma has a metabolic profile and whether this profile is related to disease severity.We characterised the serum from 22 healthy individuals and 54 asthmatics (12 mild, 20 moderate, 22 severe) using liquid chromatography–high-resolution mass spectrometry-based metabolomics. Selected metabolites were confirmed by targeted mass spectrometry assays of eicosanoids, sphingolipids and free fatty acids.We conclusively identified 66 metabolites; 15 were significantly altered with asthma (p≀0.05). Levels of dehydroepiandrosterone sulfate, cortisone, cortisol, prolylhydroxyproline, pipecolate and N-palmitoyltaurine correlated significantly (p<0.05) with inhaled corticosteroid dose, and were further shifted in individuals treated with oral corticosteroids. Oleoylethanolamide increased with asthma severity independently of steroid treatment (p<0.001). Multivariate analysis revealed two patterns: 1) a mean difference between controls and patients with mild asthma (p=0.025), and 2) a mean difference between patients with severe asthma and all other groups (p=1.7×10−4). Metabolic shifts in mild asthma, relative to controls, were associated with exogenous metabolites (e.g. dietary lipids), while those in moderate and severe asthma (e.g. oleoylethanolamide, sphingosine-1-phosphate, N-palmitoyltaurine) were postulated to be involved in activating the transient receptor potential vanilloid type 1 (TRPV1) receptor, driving TRPV1-dependent pathogenesis in asthma.Our findings suggest that asthma is characterised by a modest systemic metabolic shift in a disease severity-dependent manner, and that steroid treatment significantly affects metabolism

    Hyperglycemia induces trained immunity in macrophages and their precursors and promotes atherosclerosis

    Get PDF
    Background: Cardiovascular risk in diabetes remains elevated despite glucose-lowering therapies. We hypothesized that hyperglycemia induces trained immunity in macrophages, promoting persistent proatherogenic characteristics. Methods: Bone marrow–derived macrophages from control mice and mice with diabetes were grown in physiological glucose (5 mmol/L) and subjected to RNA sequencing (n=6), assay for transposase accessible chromatin sequencing (n=6), and chromatin immunoprecipitation sequencing (n=6) for determination of hyperglycemia-induced trained immunity. Bone marrow transplantation from mice with (n=9) or without (n=6) diabetes into (normoglycemic) Ldlr−/− mice was used to assess its functional significance in vivo. Evidence of hyperglycemia-induced trained immunity was sought in human peripheral blood mononuclear cells from patients with diabetes (n=8) compared with control subjects (n=16) and in human atherosclerotic plaque macrophages excised by laser capture microdissection. Results: In macrophages, high extracellular glucose promoted proinflammatory gene expression and proatherogenic functional characteristics through glycolysis-dependent mechanisms. Bone marrow–derived macrophages from diabetic mice retained these characteristics, even when cultured in physiological glucose, indicating hyperglycemia-induced trained immunity. Bone marrow transplantation from diabetic mice into (normoglycemic) Ldlr−/− mice increased aortic root atherosclerosis, confirming a disease-relevant and persistent form of trained innate immunity. Integrated assay for transposase accessible chromatin, chromatin immunoprecipitation, and RNA sequencing analyses of hematopoietic stem cells and bone marrow–derived macrophages revealed a proinflammatory priming effect in diabetes. The pattern of open chromatin implicated transcription factor Runt-related transcription factor 1 (Runx1). Similarly, transcriptomes of atherosclerotic plaque macrophages and peripheral leukocytes in patients with type 2 diabetes were enriched for Runx1 targets, consistent with a potential role in human disease. Pharmacological inhibition of Runx1 in vitro inhibited the trained phenotype. Conclusions: Hyperglycemia-induced trained immunity may explain why targeting elevated glucose is ineffective in reducing macrovascular risk in diabetes and suggests new targets for disease prevention and therapy

    State-of-the-art in fast liquid chromatography-mass spectrometry for bio-analytical applications

    Get PDF
    There is an increasing need of new bio-analytical methodologies with enough sensitivity, robustness and resolution to cope with the analysis of a large number of analytes in complex matrices in short analysis time. For this purpose, all steps included in any bio-analytical method (sampling, extraction, clean-up, chromatographic analysis and detection) must be taken into account to achieve good and reliable results with cost-effective methodologies. The purpose of this review is to describe the state-of-the-art of the most employed technologies in the period 2009–2012 to achieve fast analysis with liquid chromatography coupled to mass spectrometry (LC–MS) methodologies for bio-analytical applications. Current trends in fast liquid chromatography involve the use of several column technologies and this review will focus on the two most frequently applied: sub-2 ÎŒm particle size packed columns to achieve ultra high pressure liquid chromatography (UHPLC) separations and porous-shell particle packed columns to attain high efficiency separations with reduced column back-pressures. Additionally, recent automated sample extraction and clean-up methodologies to reduce sample manipulation, variability and total analysis time in bio-analytical applications such as on-line solid phase extraction coupled to HPLC or UHPLC methods, or the use of other approaches such as molecularly imprinted polymers, restricted access materials, and turbulent flow chromatography will also be addressed. The use of mass spectrometry and high or even ultra-high resolution mass spectrometry to reduce sample manipulation and to solve ion suppression or ion enhancement and matrix effects will also be presented. The advantages and drawbacks of all these methodologies for fast and sensitive analysis of biological samples are going to be discussed by means of relevant applications
    corecore