37 research outputs found

    Transitions:comparing timescales of eruption and evacuation at Volcán de Fuego (Guatemala) to understand relationships between hazard evolution and responsive action

    Get PDF
    During volcanic crisis, effective risk mitigation requires that institutions and local people respond promptly to protect lives and livelihoods. In this paper, we ask: over what timescales do explosive paroxysmal eruptions evolve? And how do these timescales relate to those of people’s past responses? We explore these questions by comparing timescales of eruptions and evacuations for several recent events at Volcán de Fuego (Guatemala) to identify lags in evacuation and determine the drivers of these lags. We use multiple geophysical datasets for explosive paroxysmal eruptions (“paroxysms”) in 2012–2018 to constrain timescales of eruptive evolution. In parallel, we determine timescales of response and the impacts of uncertainty and eruptive behaviours on decision-making through interviews with institutional and local actors. We then compare eruption and response timescales to explore the drivers for decision-making, whether volcanic, institutional, or personal. We find that eruption and response timescales are comparable. However, we also find that periods of decision-making and warning dissemination delay response until well after eruptive onset. We document how in recent eruptions, response occurs during eruptive climax when risk is at peak. We use paired timelines to elucidate the key drivers of this ‘response lag’ and show that despite the high levels of forecasting uncertainty, response times could be improved by agreed means to collaborate through shared information and agreed actions. We conclude by considering how the analysis presented here might be useful to different actors who share the goal of preserving lives and livelihoods at Fuego, focussing on how community’s needs can be met such that during an eruptive crisis the community can evacuate in time. Our analysis offers practical insights for people working to mitigate risk to populations near active volcanoes around the world.</p

    Geomechanical rock properties of a basaltic volcano

    Get PDF
    In volcanic regions, reliable estimates of mechanical properties for specific volcanic events such as cyclic inflation-deflation cycles by magmatic intrusions, thermal stressing, and high temperatures are crucial for building accurate models of volcanic phenomena. This study focuses on the challenge of characterizing volcanic materials for the numerical analyses of such events. To do this, we evaluated the physical (porosity, permeability) and mechanical (strength) properties of basaltic rocks at Pacaya Volcano (Guatemala) through a variety of laboratory experiments, including: room temperature, high temperature (935 °C), and cyclically-loaded uniaxial compressive strength tests on as-collected and thermally-treated rock samples. Knowledge of the material response to such varied stressing conditions is necessary to analyze potential hazards at Pacaya, whose persistent activity has led to 13 evacuations of towns near the volcano since 1987. The rocks show a non-linear relationship between permeability and porosity, which relates to the importance of the crack network connecting the vesicles in these rocks. Here we show that strength not only decreases with porosity and permeability, but also with prolonged stressing (i.e., at lower strain rates) and upon cooling. Complimentary tests in which cyclic episodes of thermal or load stressing showed no systematic weakening of the material on the scale of our experiments. Most importantly, we show the extremely heterogeneous nature of volcanic edifices that arise from differences in porosity and permeability of the local lithologies, the limited lateral extent of lava flows, and the scars of previous collapse events. Input of these process-specific rock behaviors into slope stability and deformation models can change the resultant hazard analysis. We anticipate that an increased parameterization of rock properties will improve mitigation power

    Mapas de amenaza por caída de ceniza y proyectiles balísticos, volcán de Pacaya, Guatemala

    Get PDF
    La actividad volcánica alrededor del mundo es muy variada y compleja. En Guatemala existen alrededor de 43 estructuras que son consideradas como volcanes y que se alinean de oeste a este del país debido a la zona de subducción. A la actualidad la clasificación de volcanes publicada por INSIVUMEH en el ranking de Peligrosidad Volcánica define tres volcanes con actividad diaria significativa: Pacaya, Fuego y Santiaguito, las cuales generan productos volcánicos que afectan poblaciones, infraestructuras, medios de vida y vías aéreas en todo el país (Roca et al., 2021). Debido a su cercanía con la ciudad de Guatemala y los productos volcánicos que genera, el volcán de Pacaya es uno de los volcanes más peligrosos, catalogado como un volcán con un VEI 3, su actividad varía entre efusiva de tipo estromboliana y explosiva con probabilidades de desarrollar actividad subpliniana como lo menciona Kitamura y Matías (1995)

    Foundations for Forecasting: Defining Baseline Seismicity at Fuego Volcano, Guatemala

    Get PDF
    Accurate volcanic eruption forecasting is especially challenging at open vent volcanoes with persistent low levels of activity and relatively sparse permanent monitoring networks. We present a description of seismicity observed at Fuego volcano in Guatemala during January of 2012, a period representative of low-level, open-vent dynamics typical of the current eruptive period. We use this time to establish a baseline of activity from which to build more accurate forecasts. Seismicity consists of both harmonic and non-harmonic tremor, rockfalls, and a variety of signals associated with frequent small emissions from two vents. We categorize emissions into explosions and degassing events (each emitted from both vents); the seismic signatures from these two types of emissions are highly variable. We propose that both vents partially to fully seal between explosions. This model allows for the two types of emissions and accommodates the variety of seismic waveforms we recorded. In addition, there are many small discrete events not linked to eruptions that we examine in detail here. Of these events, 183 are classified into 5 families of repeating, pulse-like long period (0.5–5 Hz) events. Using arrival times from the 5 families and other high-quality events recorded on a temporary, nine-station network on the edifice of Fuego, we compute a 1-D velocity model and use it to locate earthquakes. The waveforms and shallow locations of the repeating families suggest that they are likely produced by rapid increases in gas pressure within a crack very near the surface, possibly within a sealed or partially sealed conduit. The framework from this study is a short but instrument intense observation period, activity description, seismic event detection, velocity modeling, and repose period analysis. This framework can act as a template for augmenting monitoring efforts at other under-studied volcanoes. Even relatively limited studies can at a minimum aid in drawing parallels between volcanic systems and improve comparisons

    Eruption frequency patterns through time for the current (1999–2018) activity cycle at Volcán de Fuego derived from remote sensing data:Evidence for an accelerating cycle of explosive paroxysms and potential implications of eruptive activity

    Get PDF
    Volcán de Fuego is a stratovolcano in Guatemala that has produced over 50 VEI ≥ 2 eruptions since 1524. After two decades of quiescence, in 1999 Fuego entered a new period of eruptive activity that continues until the present day, characterized by persistent Strombolian activity interspersed with occasional “paroxysmal” eruptions of greater magnitude, the most recent of which occurred in 2018. The land surrounding Fuego accommodates tens of thousands of people, so greater understanding of its eruptive behaviour has important implications for hazard assessment. Nevertheless, there is relatively little literature that studies recent (since 1999) activity of Fuego in detail. Using time-series analysis of remote sensing thermal data during the period 2000–2018 combined with recent bulletin reports, we present evidence for a new eruptive regime beginning in 2015. We find that this regime is defined by a greater frequency of paroxysmal eruptions than in previous years and is characterized by the following sequence of events: (i) effusion of lava flows and increase in summit explosive activity, followed by (ii) an intense eruptive phase lasting 24–48 h, producing a sustained eruptive column, continuous explosions, and occasional pyroclastic flows, followed by (iii) decrease in explosive activity. We discuss various models that explain this increase in paroxysmal frequency, and consider its implications for hazard assessment at Fuego. We advocate the pairing of remote sensing data with monitoring reports for understanding long-term changes in behaviour of poorly-instrumented volcanoes. The results that we present here provide a standard for informed assessment of future episodes of unrest and paroxysmal eruptions of Fuego

    Source Mechanism of Seismic Explosion Signals at Santiaguito Volcano, Guatemala:New Insights From Seismic Analysis and Numerical Modeling

    Get PDF
    Volcanic activity at the Santiaguito dome complex (Guatemala) is characterized by lava extrusion interspersed with small, regular, gas-and-ash explosions that are believed to result from shallow magma fragmentation; yet, their triggering mechanisms remain debated. Given that the understanding of source processes at volcanoes is essential to risk assessments of future eruptions, this study seeks to shed light on those processes. We use data from a permanent seismic and infrasound network at Santiaguito volcano, Guatemala, established in 2018 and additional temporary stations, including a seismic array deployed during a 13-day field investigation in January 2019 to analyze and resolve the source characteristics of fragmentation leading to gas-and-ash explosions. Seismic data gathered within a distance of 4.5 km from the vent show a weak seismic signal 2–6 s prior to the explosions and associated main seismic signal. To resolve the source location and origin of the seismic signals, we first used ambient noise analysis to assess seismic velocities in the subsurface and then used two-dimensional spectral element modeling (SPECFEM2D) to simulate seismic waveforms. The analyzed data revealed a two-layer structure beneath the array, with a shallow, low-velocity layer (vs_{s} = 650 m/s) above deeper, high-velocity rocks (vs_{s} = 2,650 m/s). Using this velocity structure, possible source mechanisms and depths were constrained using array and particle motion analyses. The comparison of simulated and observed seismic data indicated that the precursory signal is associated with particle motion in the RZ-plane, pointing toward the opening of tensile cracks at a depth of ∼600 m below the summit; in contrast, the main signal is accompanied by a vertical single force, originating at a shallow depth of about ∼200 m. This suggests that the volcanic explosions at Santiaguito are following a bottom-up process in which tensile fractures develop at depth and enable rapid gas rise which leads to the subsequent explosion. The result indicates that explosions at Santiaguito do not occur from a single source location, but from a series of processes possibly associated with magma rupture, gas channeling and accumulation, and fragmentation. Our study provides a good foundation for further investigations at Santiaguito and shows the value of comparing seismic observations with synthetic data calculated for complex media to investigate in detail the processes leading up to gas-ash-rich explosions found at various other volcanoes worldwide

    Textural Insights Into the Evolving Lava Dome Cycles at Santiaguito Lava Dome, Guatemala

    Get PDF
    The structures and textures preserved in lava domes reflect underlying magmatic and eruptive processes, and may provide evidence of how eruptions initiate and evolve. This study explores the remarkable cycles in lava extrusion style produced between 1922 and 2012 at the Santiaguito lava dome complex, Guatemala. By combining an examination of eruptive lava morphologies and textures with a review of historical records, we aim to constrain the processes responsible for the range of erupted lava type and morphologies. The Santiaguito lava dome complex is divided into four domes (El Caliente, La Mitad, El Monje, El Brujo), containing a range of proximal structures (e.g., spines) from which a series of structurally contrasting lava flows originate. Vesicular lava flows (with a'a like, yet non-brecciated flow top) have the highest porosity with interconnected spheroidal pores and may transition into blocky lava flows. Blocky lava flows are high volume and texturally variable with dense zones of small tubular aligned pore networks and more porous zones of spheroidal shaped pores. Spines are dense and low volume and contain small skeletal shaped pores, and subvertical zones of sigmoidal pores. We attribute the observed differences in pore shapes to reflect shallow inflation, deflation, flattening, or shearing of the pore fraction. Effusion rate and duration of the eruption define the amount of time available for heating or cooling, degassing and outgassing prior to and during extrusion, driving changes in pore textures and lava type. Our new textural data when reviewed with all the other published data allow a cyclic model to be developed. The cyclic eruption models are influenced by viscosity changes resulting from (1) initial magmatic composition and temperature, and (2) effusion rate which in turn affects degassing, outgassing and cooling time in the conduit. Each lava type presents a unique set of hazards and understanding the morphologies and dome progression is useful in hazard forecasting

    Statistical evidence of transitioning open-vent activity towards a paroxysmal period at Volcán Santiaguito (Guatemala) during 2014–2018

    Get PDF
    Long-term eruptive activity at the Santiaguito lava dome complex, Guatemala, is characterised by the regular occurrence of small-to-moderate size explosions from the active Caliente dome. Between November 2014 and December 2018, we deployed a seismo-acoustic network at the volcano, which recorded several changes in the style of eruption, including a period of elevated explosive activity in 2016. Here, we use a new catalogue of explosions to characterise changes in the eruptive regime during the study period. We identify four different phases of activity based on changes in the frequency and magnitude of explosions. At the two ends of the spectrum of repose times we find pairs of explosions with near-identical seismic and acoustic waveforms, recorded within 1–10 min of one another, and larger explosions with recurrence times on the order of days to weeks. The magnitude-frequency relationship for explosions at Santiaguito is well described by a power-law; we show that changes in b-value between eruptive regimes reflect temporal and spatial changes in rupture mechanisms, likely controlled by variable magma properties. We also demonstrate that the distribution of inter-explosion repose times between and within phases is well represented by a Poissonian process. The Poissonian distribution describing repose times changes between and within phases as the source dynamics evolve. We find that changes in source properties restrict the extrapolation of explosive behaviour to within a given eruptive phase, limiting the potential for long-term assessments of anticipated eruptive behaviour at Santiaguito

    The effect of three large Mw¿7.3 subduction earth-quakes (August-November 2012) on volcanic unrest in Central America

    Get PDF
    ¿Was the volcanic eruption triggered by the earthquake?¿ The answer to this question usually is ¿maybe¿ or ¿a coincidence¿. A region like Central America, is an adequate area to find hints to answer this question because have the necessary ingredients: the frequent occurrence of large earthquakes (M5+) and dozens of active volcanoes. This research focuses on whether the uncommon occurrence of three large earthquakes in the subduction zone of Central America, within a time span of ten weeks in 2012, promoted enhanced volcanic activity. The time window analyzed is from 2000 to 2019, which includes a total of 50 volcanic eruptions with a VEI¿2. Before the 2012 earthquakes, 22 eruptions occurred. The Monte Carlo statistical simulation method allowed to demonstrate that this increase in the number of volcanic eruptions after the three large earthquakes of 2012 it is not a temporal coincidence. We analyzed the characteristics of each earthquake and described how they could disturb the volcanic systems. Although Central America hosts 24 volcanoes with historical eruptions, only 11 of them erupted after the 2012 earthquakes. Why did only these volcanoes erupt? To answer this question, we calculated the dynamic and static stress in each volcano and the level of volcanic unrest (the change in volcanic activity beyond background behavior to worrisome levels) prior to the earthquakes. We found that volcanoes in a unrest stage before the earthquakes but, without experiencing explosive eruptions before, erupted after receiving the seismic shocks. This fact suggests that the earthquakes by themselves did not transfer enough energy to generate the volcanic eruptions when volcanoes were not ready to erupt. However, earthquakes could promote volcanic eruptions when volcanoes were already at unrest. This research offers a tool for forecasting volcanic activity when a large earthquake hits a region, if the volcanic activity is previously monitored
    corecore