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Accurate volcanic eruption forecasting is especially challenging at open vent volcanoes

with persistent low levels of activity and relatively sparse permanent monitoring networks.

We present a description of seismicity observed at Fuego volcano in Guatemala during

January of 2012, a period representative of low-level, open-vent dynamics typical of the

current eruptive period. We use this time to establish a baseline of activity from which to

build more accurate forecasts. Seismicity consists of both harmonic and non-harmonic

tremor, rockfalls, and a variety of signals associated with frequent small emissions from

two vents. We categorize emissions into explosions and degassing events (each emitted

from both vents); the seismic signatures from these two types of emissions are highly

variable. We propose that both vents partially to fully seal between explosions. This

model allows for the two types of emissions and accommodates the variety of seismic

waveforms we recorded. In addition, there are many small discrete events not linked

to eruptions that we examine in detail here. Of these events, 183 are classified into 5

families of repeating, pulse-like long period (0.5–5Hz) events. Using arrival times from the

5 families and other high-quality events recorded on a temporary, nine-station network on

the edifice of Fuego, we compute a 1-D velocity model and use it to locate earthquakes.

The waveforms and shallow locations of the repeating families suggest that they are likely

produced by rapid increases in gas pressure within a crack very near the surface, possibly

within a sealed or partially sealed conduit. The framework from this study is a short

but instrument intense observation period, activity description, seismic event detection,

velocity modeling, and repose period analysis. This framework can act as a template for

augmenting monitoring efforts at other under-studied volcanoes. Even relatively limited

studies can at a minimum aid in drawing parallels between volcanic systems and improve

comparisons.

Keywords: Fuego volcano, volcano monitoring, volcano seismology, velocity modeling, repeating events

INTRODUCTION

Increased seismic activity is often the most discernable indicator of volcanic unrest (Tilling, 2008),
and seismic monitoring of volcanic environments is therefore an essential component of any
volcano observation endeavor. In many cases, the ascent of magma from the mid crust is signaled
by swarms of earthquakes weeks or months prior to an explosive eruption (White andMcCausland,
2016). Over the last 30 years, advances in the field of volcano seismology have been crucial to aiding
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the scientific understanding of the processes that precede large-
scale volcanic eruptions (Chouet andMatoza, 2013). Even a small
number of broadband seismic stations can be one of the most
cost effective means of basic volcano monitoring if the goal is
to forecast large eruptions (White et al., 2011). Despite these
successes and associated advances in the field, medium-term
accuracy and precision of eruption forecasting still has much
room for improvement.

Sometimes the beginning or ending of a volcanic eruption
is not a discrete event. Eruptive episodes can persist over time
scales from days to years, and in rare cases decades (Siebert
et al., 2011). These “open-vent” volcanoes (Rose et al., 2013)—
where connections between a magma body and the atmosphere
are already established, or “quiescently active” (Stix, 2007) or
“persistently restless” (Rodgers et al., 2013) volcanoes—where
those connections open and close due to seemingly small changes
within a system, provide opportunities for understanding
volcanism as a phenomenon, but also present unique challenges
for hazard mitigation (see Rose et al., 2013 for a review). When
a volcano already exhibits frequent explosive eruptions, nearly
continuous gas emission, and abundant volcanic seismicity,
indicators that precede a shift to more dangerous levels of activity
may be subtle (Roman et al., 2016). In these open systems, it
is important to understand more detail about the seismicity to
recognize changes in complex, low-level signals. Establishing a
long, detailed, and well understood baseline of eruptive activity
levels is one way to facilitate more accurate medium term
forecasts (Tilling, 2008), and can be especially valuable in open
vent situations (National Academies of Sciences, Engineering,
and Medicine, 2017).

Fuego volcano is one of the most persistently active vents
in the Central American Volcanic front, and has represented
the main center of activity for the approximately 80,000-year-
old Fuego-Acatenango massif for the past 8,500 years (Vallance
et al., 2001). Fuego lavas have been chiefly basaltic-andesitic
in composition, in contrast to the mostly andesitic activity of
previous eruptive centers (Basset, 1996). Fuego has had more
than 60 documented historical eruptions since 1524 (Escobar
Wolf, 2013). The current eruptive episode began in 1999 and
has been marked by periods of basaltic lava flows, strombolian
style explosions and degassing events, and occasional paroxysmal
events with Volcano Explosivity Indexes (VEI) of 2 and below.

Constant activity and relatively easy access to the flanks of
the volcano make Fuego an excellent location to study open
vent volcanic behavior. A number of research groups have
partnered with the Guatemalan Instituto Nacional de Sismologia,
Vulcanologia, Meterologia, e Hidrologia (INSIVUMEH) during
this current eruptive episode to study the activity and work
toward mitigating volcanic risk, with a large focus on using
seismic and complementary data to characterize the magmatic
system. A relatively long-term study by Lyons et al. (2010)
used daily visual observations, seismic data, and thermal satellite
images to characterize quasi-cyclic activity that included weeks
to months of low-level explosive eruptions between paroxysmal
eruptions that last for 1–2 days. Several field campaigns have
collected data from a variety of sensors including seismometers,
tilt meters, infrasound microphones, thermal imaging cameras,

and SO2 cameras to study explosive activity in more detail.
Among the findings of these groups is the strong association
between seismicity and gas emission. This includes intra
explosion non-harmonic tremor accompanying gas emissions
(Nadeau et al., 2011) and three repeating very-long-period (VLP)
event types associated with explosive ash-rich emissions from two
separate vents and weaker puffing activity (Waite et al., 2013).
The multi-instrumental work has led to a model for Fuego in
which a seal in the uppermost conduit develops rapidly through
microlite crystallization. Tilt data show that the sealed vent
results in a pressurization and inflation of the summit beginning
20–30min before most explosions (Lyons et al., 2012). Inversions
of the seismic signals for the source of VLP events have produced
a model for the uppermost conduit which dips slightly to the west
below a pipe-like uppermost portion (Waite and Lanza, 2016).

This recent work has focused primarily on eruption-related
seismic activity to shed light on the explosion processes, but no
broad characterization of local volcano tectonic (VT) or long
period (LP) seismicity has been undertaken since the eruptive
episode of 1975–1977 (Mcnutt and Harlow, 1983; Yuan et al.,
1984). In this study, we describe the seismic activity during
January of 2012 with an emphasis on LP activity. Based on
discussions with the INSIVUMEH staff and compared to activity
observed before (i.e., Lyons, 2011) and since the field occupation
(i.e., Chigna et al., 2012; Global Volcanism Program, 2013),
the volcanic activity observed during this time represents a
typical period between paroxysms and serves as a good example
of "background activity (Figure 5C). This study describes the
seismic activity during this time and highlights processes not
previously investigated.

METHODS

Instrumentation
We installed 9 broadband seismometers around Fuego volcano
from 11 January to 29 January 2012 (Figure 1) at distances
between about 800m and 3 km from the summit. Sites were
chosen to provide full azimuthal coverage at distances as close
as possible to the vent without compromising safety. Due to the
steep topography and nearly continuous rockfall, the southern
side of the edifice is less accessible than the north. Data were
recorded on RefTek 130 Data Acquisition Systems at 100Hz
from seven Guralp CMG-40T (50Hz to 30 s flat response) and
two Trillium Compact (100Hz to 120 s) seismometers. One of
the Trillium Compact instruments was initially located at the
N station site due to time constraints in the field and moved
the following day to the NW1 site the following day for the
remainder of the occupation. Two stations (NE1 and NW1)
had collocated tilt-meters and arrays of three low-frequency
microphones. Two time-lapse cameras located at ∼800 and
1,000m NNE of the summit recorded images of volcanic activity
and weather conditions. One of these cameras, a PlotwatcherPro
made by Day6Outdoors, hereafter referred to as Cam1 captured
images (1280 × 720 pixels) at 1 s intervals during daylight
hours. The other, a Canon PowerShot A480 with a firmware
modification, hereafter referred to as Cam2 recorded images
(2272× 1704 pixels) at 5 s intervals continuously (day and night)
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FIGURE 1 | January 2012 locations and operational times of equipment. (A) Shows a map location of Fuego volcano in Guatemala. A larger-scale view of Fuego with

the locations of the time-lapse cameras and seismic stations is shown in (B). White triangles mark the location of the Trillium Compact instruments and black triangles

indicate Guralp CMG-40T instruments. The black square represents the permanent short period FG3 station operated by INSIVUMEH. Cam1 and Cam2 mark the

locations of the time-lapse cameras. The approximate location of the summit vent is shown in red and the approximate location of the flank vent is shown in orange.

Contour intervals are 500m. The operational times of the stations and time-lapse cameras are shown in (C).

while battery power and storage space remained. Camera clocks
were calibrated by hand, referencing hand-held GPS units, so the
accuracy of image time stamps is assumed to be± 1 s of true GPS
time.

Event Detection
We employed several methods to identify discrete events in the
combined seismic, infrasound, and imagery data. This meant that
our definition of what constituted an event was a somewhat fluid
concept during the different stages of analysis. Initially, events
were emissions that could be clearly identified with the camera
images. The associated seismic signals were then analyzed and
upon further inspection of the seismic data, events with similar

seismic signals were identified.Many of these other events did not
have associated clear visual records, either because the summit
was obscured by clouds or because they simply did not produce
emissions. We also found seismic signals associated with activity
such as rockfall that was not clearly visible in the imagery data.
The rest of this methods section will explain our use of multiple
detection methods which allowed us to classify the different types
of events discussed in section Recorded Activity.

Visual Identification
To begin our description of the activity, we sought to identify
events and event timing visually, defining events as visible
emissions from the volcano as the INSIVUMEH observers would
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in their daily reports. We identified 571 events using the images
acquired by Cam1 and 225 events using the images acquired by
Cam2, classifying them based on which vent they were emitted
from, their initial speed, and the color and opacity of plume
emissions during the day and based on incandescence at or above
a vent position and incandescence of ejected material during
the night. While this captured a large number of events, camera
downtime and lack of visibility due to weather meant that most
of the time period of the deployment was not recorded visually.
In addition, atmospheric conditions above and around the crater
produced condensation and or dust clouds which could closely
mimic weak degassing emissions. Although great care was taken
to exclude this type of event from the record, it is possible that
some non-events were falsely identified as emission events.

We used seismic data (vertical velocity traces and FFT
spectrograms with 1,024 s windows) recorded at temporary
station NE1 to verify the volcanic activity associated with each
of the events in the catalog derived from the images. This allowed
us to eliminate events picked visually from the images which did
not also appear contemporaneously with seismic activity as well
as to describe the events in terms of their seismic characteristics.
Upon removing false identifications, combining the datasets, and
removing duplicate events observed with both cameras, we are
left with a total of 448 events observed during our field campaign,
averaging 2–3 events per hour over 7 days of camera operation.
However, this event rate is most likely a gross underestimate
because during those 7 days of camera operation, visibility
was often limited or blocked due to atmospheric conditions.
Quantifying an exact amount of time that visibility was limited
is impossible because night images can only be classified as cloud
free if incandescence is visible, but a lack of incandescence could
be due to cloud obstruction or a lack of activity. An inspection
of most single hours of activity while the cameras were recording
with full visibility suggests 6–10 events per hour would be a better
estimate, especially if weak degassing events are considered.

STA/LTA Algorithm
We used the seismic data to create a consistent catalog of seismic
events during the deployment. The initial processing was done
with Boulder Real Time Technologies Antelope 5.7 software.
The data were processed using a short-time average/long-time
average (STA/LTA) triggering algorithm using all seismic stations
in the network. The algorithm was calibrated by comparing the
number and duration of events detected to the visual activity
observed on the time-lapse cameras. Data were first filtered from
1 to 25Hz using a four-pole bandpass filter, and Root Mean
Square averages were taken over 1 s (STA) and 9 s (LTA) windows
with threshold ratios for detection at 2.5 times the signal to
noise ratio. When more than 5 stations in the network trigger
on the same event, it is added to a catalog. The five-station
threshold effectively limits false detection of rockfalls as emission
events, which tend to be very localized and not detected by
stations on opposite flanks. Figure 2 summarizes the timing of
the identified events by showing variation in events per hour,
inter-event time, and event duration. The events with especially
long durations, i.e., longer than 10min are generated by volcanic
tremor coinciding with other activity which prevents reaching

the detection shutoff threshold of 2.2 times the signal to noise
ratio (SNR).

Events in this catalog were then reviewed manually, resulting
in a total of 1,032 events detected on 5 or more stations
through the occupation, an increase of 584 events from visual
observations alone. Most of the events detected by the STA/LTA
algorithms had emergent onsets which were very hard to discern.
SNR has been found to be the main source of pick error for
individual analysts (Zeiler and Velasco, 2009). Four members
of our research group picked P-wave arrivals and determined
pick uncertainties for 10 separate events from the middle of the
dataset, and although some events have clear, impulsive arrivals,
many also have arrivals which are much more ambiguous and
therefore might not be reliable for earthquake location or velocity
modeling. These results informed our decision to assign arrival
weights to picks to reflect the impulsiveness of onset based on
the analyst assigned pick uncertainty, which range from 0 to 3 for
values less than 0.06, 0.15, 0.30, and 0.60 s respectively, and 4 for
values greater than 0.60 s. For a first order approximation of event
locations, we located these events using Antelope’s dbgrassoc
program which returns a location only if a detected event can be
located within a user-specified grid and relies on the IASPEI91
(Kennett, 1991) crustal model. IASPEI91 gives a P-wave velocity
of 5.8 km/s for the first 20 km depth, and 6.5 km/s from 20 to
35 km depth. The locations were later refined with a local 1D
model as described below.

REDPy
The initial catalog of seismic events served as a starting point
for further analysis. Recurring events, seismic events that have
a similar mechanism and occur in roughly the same location, are
common beneath volcanoes. In order to identify classes of these
events, we used the Repeating Earthquake Detector in Python
(REDPy) tool (Hotovec-Ellis and Jeffries, 2016). This detector
begins by using an STA/LTA algorithm to identify event arrivals
on different channels across a seismic network and stores events
in a series of tables, just as with typical detection algorithms.
The difference between REDPy and other tools is in the event
association step. When enough stations or channels are triggered
at once, an event is run through a series of cross-correlations
in the frequency domain for comparison with other events in
the catalog and assignment based on cross-correlation coefficient
values.

A user can choose to manually delete events prior to analysis
based on some criteria, such as erroneous triggers. The system
stores both true events and those that the user flags as false
events. Each newly detected event is compared with both groups
of events. If a new event matches one previously defined as a
false event, REDPy skips to the next event. If the new event does
not correlate with any of the deleted events, the system writes
that event to an “orphan” table, or an event without a currently
identified “family” of other similar events.

As the program continues, REDPy looks at each good event
in comparison with events in the “orphan” table to determine
a cross-correlation coefficient. If a new event correlates with
an “orphan” event above a user defined threshold on enough
stations, those correlating events are moved from the “orphan”
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FIGURE 2 | Six days of seismic activity identified by an STA/LTA algorithm while 9 network stations were all operational. Event spacing and Duration plots have y-axes

with logarithmic scaling.

table and grouped as a “family.” The system designates the first
event as a “core” event and writes it to a representative events
table, which becomes important in the next step. If a new event
does not correlate with any events in the current “orphan” table,
it is cross-correlated with all previously identified “core” events
in the representative events table. If the new event then correlates
with any “core” events above the threshold, it is added to that
event’s family. If not, the new event is appended to the “orphan”
table.

Clusters are defined using the Ordering Points to Identify
the Clustering Structure (OPTICS) algorithm (Ankerst et al.,
1999) which, in this usage, relies on correlation coefficients. In
this implementation, an event only needs to correlate with one
other event in the family to be included in the cluster; it favors
fewer clusters with greater numbers of related events within each
cluster family. At the same time, this algorithm identifies the
event most closely correlated to all other events in the family
and updates the representative event table accordingly. If the
new event happens to correlate with more than one family,
those family tables are merged without breaking OPTICS rules.
Events are aligned within families after each clustering routine is
completed so that correlation windows remain consistent.

Along with setting correlation thresholds, STA/LTA
parameters, and minimum numbers of station or channel
detections necessary to trigger the REDPy system, the user
can search different frequency bands and give events on the
“orphan” table expiration times after which they will no longer
be compared to new events. We used the same STA and LTA
window length settings for the STA/LTA algorithm that were

used in the Antelope analysis, although the REDPy bandpass
filter was in the LP band (0.5–5Hz). We experimented with
multiple filter bandwidths and found that including signal
below 0.5Hz caused the algorithm to return events which were
essentially correlated microseism, and including signal above
5Hz returned almost no events due to scattering and attenuation
of signals along the path, or minor variations in source processes
evident only in the higher frequencies. The STA/LTA trigger
ratio was 2.5 as before and a ratio of 2.2 triggered the end of the
event. We restricted this analysis to only the six closest stations,
excluding S, SE2, SW2 because including them again returned
more correlated noise than events in the final REDPy catalog.
This effective reduction of stations from 9 to 6 resulted in our
choice to opt for only requiring that 4 of the 6 stations return
concurrent detections to be considered for clustering. For an
event to be associated with an event family required a correlation
coefficient of 0.7 or greater on 3 or more stations.

The program detected 370 events in five cluster families which
had more than five repeating events between January 15 and
January 24. An additional 1,867 events were found with the
STA/LTA detector but were not well correlated with other events
(Figure 3). Many different station configurations and STA/LTA
settings were tested to optimize the detection of “true” events, but
most produced more correlated noise than true event clusters.

Phase-Weighted Stacking
To improve the signal to noise ratio for the event families
detected by REDPy, we use the time-frequency phase-weighted
stacking technique. This technique weights the stack by
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FIGURE 3 | Repeating earthquakes detected by REDPy. The gray lines in (A–E) represent the core event identified by the OPTICS algorithm for each cluster of events.

The black line is a simple linear stack, and the red line is the phase weighted stack showing improved SNR. All the traces in the left section of each panel are of vertical

components, and spectra are taken from the vertical component of NE1. Constituent waveforms are all filtered from 0.5 to 5Hz with a 4 pole bandpass filter prior to

any stacking, and each panel shows normalized traces. (A) Cluster 1 (B) Cluster 2 (C) Cluster 3 (D) Cluster 4 (E) Cluster 5 (F) Times for each event with cluster

numbers on y axis and number of total events recorded to right of timeline (in cases where events overlap due to scale constraints, lighter shades signify more events).

instantaneous frequency determined by the S transform allowing
frequency-dependent time windowing (Stockwell et al., 1996;
Schimmel and Paulssen, 1997; Pinnegar, 2005; Schimmel
et al., 2011; Thurber et al., 2014). and shows significant SNR
improvement (Figure 3). We pick arrivals from the resulting
stacks using Seis_Pick (Verdon, 2012) and assign those arrivals
to the origin time and location of each core event from REDPy.
Subsequently, we remove the remaining family members from
the Antelope catalog.

Velocity Modeling and Earthquake
Location
To better constrain the Antelope locations, we derive a 1-D
velocity model by relocating events using VELEST (Kissling et al.,
1994). We fix velocities below 9 km to values reported by Franco
et al. (2009), assuming most of the activity to be concentrated
within the edifice and considering the limitations on event depths
based on the ∼4 km aperture of the array we had deployed.
Station corrections are set initially to zero but are inverted for
in each iteration and carried through to subsequent steps. We
only use a subset of high quality events for the velocity modeling
procedure due to the complexities inherent in exploring the
model space with the simultaneous inversion for velocity and
location. VELEST is able to use P-wave and S-wave arrival
times, but allows modeling with only P-wave arrivals. Due to
the assumed proximity of sources to receivers and the challenges
in obtaining precise P-wave arrivals, we restrict our velocity
modeling to P-waves only.

Our subset firstly includes the five phase-weighted stacks of
clustered events (PWSCE). Next, we select high quality events
from the Antelope database. To be considered high quality, the
events need to fulfill three criteria: first, be located by Antelope
closer to the summit than the furthest station, S1; second, be
located by Antelope no deeper than 10 km below sea level; and
third, have at least 6 stations with arrivals weighted 1 or 0. We
exclude events already within the phase weighted stacks and
are left with 60 events plus the five PWSCEs. Thirteen of these
60 events exhibit contemporaneous spikes on the infrasound
channels normally indicating explosions, and these events are
given an initial location at the top of the summit crater. This
results in a starting set of 47 events with initial locations as
determined by the Antelope locations, 13 events with locations
fixed to the summit, and 5 PWSCEs with initial locations set to
the surface directly under one of four reference stations.

For 17 events in the initial Antelope catalog, the seismic events
not only exhibit contemporaneous spikes on the infrasound,
but also occur within 2 s of the onset of emissions from the
vent detected visually on one or both time-lapse cameras.
We treat these events as shots within VELEST which allows
us to constrain their locations without giving them a known
origin time. This assumption may contribute a small error,
however because shots are subject to selection criteria later in
the process, we deem the approach to be appropriate. To these
shots we add regional earthquakes detected with our network
and contained in the International Seismological Centre On-line
Bulletin (International Seismological Centre, 2016), again fixing
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location but not origin time. After subjecting these shots to the
same selection criteria as the other events, we had 25 shots, 17 of
which were fixed to the location of the summit vent.

Following the “recipe” of Kissling et al. (1994) and using
approaches similar to Clarke et al. (2009) and Hopp and
Waite (2016), we explore the initial model space by trying
1,000 different random initial velocity models for four different
reference stations. Each of these models consisted of 10 possibly
separate velocity layers. Programmatic constraints of VELEST
require all seismic stations be within the first layer of the velocity
model, so our layer boundaries are −4, −2, −0.5, 1, 3, 5, 7, 9, 17,
and 37 km depth. The final model has six layers spanning from
2 km above sea level to a depth of 9 km. The thickness and spacing
of these layers represents the minimum number of layers able to
accommodate the variations we observed in early trials that also
minimizes the number layers with redundant velocities. Layers
eight, nine, and 10 which are below 9 km are fixed to the regional
velocity model of Franco et al. (2009) which report velocities of
6.55 km/s from depths of 9–17 km, 6.75 km/s from depths of
17–37 km, and 7.95 km/s below 37 km.

We constructed the random velocity models starting with
layer 1 (uppermost) and layer 7. We first generated 1,000 random
numbers uniformly distributed between 0 and 1 usingMATLAB’s
rand function (MATLAB, 2015). We established upper and lower
velocity limits for this top layer between 0.6 km/s and 4 km/s, so
we multiplied that vector of random numbers between 0 and 1
by 3.4 km/s and added 0.6 km/s to enforce our upper and lower
bounds for the layer. We repeated this process for layer 7 with
bounds set between 2 and 6.55 km/s. We used the randomly
determined velocities for layers 1 and 7 as a new constraint on
layer 4, and for each model, generated another random number
between 0 and 1 and multiplied it by the difference between
velocities in layers 1 and 7. Layers 2 and 3 were then created by
generating two random numbers, between 0 and 1, multiplying
them by the difference between layers 1 and 4, and then sorted
with the lower velocity always being assigned to the shallower
layer. This last step was repeated for layers 5 and 6 using the
difference between layers 4 and 7 to complete the seven varying
layers of the new randomly generated velocity models.

Although Kissling and others recommend against using shots
in the early stages of exploring the initial 1-D velocity model
because of the large effect they can have on the results and
because they only sample the shallowest velocity layer, we chose
to include shots because we assume that most of the events we
recorded are occurring in the shallowest two layers, especially due
to the programmatic constraint that all stations must be located
within the uppermost modeled layer. The models were run for
10 iterations, or until the program failed to find a better solution
after four tries. The best resulting model is selected as the model
which minimizes both RMS error and station correction range.

The events are further refined for the next step by removing
picks with residuals greater than 0.25 s. If this results in less than 6
picks for an event, the event is removed from the working catalog.
Individual events with RMS greater than 1.0 or with station
gaps of greater than 270◦ are also removed from the set. These
criteria left 7 events plus 5 PWSCEs and 16 shots, 10 of which
are explosions at the summit vent. These events pass through

to another 1,000 random velocity models, but incorporate the
new station corrections, event locations, and event origin times.
We again select the model with the lowest RMS error and
minimum station corrections as the best resulting model. We
then iteratively feed these results into VELEST simultaneous
inversionmode until the velocitymodel and earthquake locations
stabilize to have minimal changes from one iteration to the next.
We run the events through VELEST single event mode to locate
the earthquakes without simultaneously inverting for velocity.
The final results in Figure 4 contain 7 events plus 5 PWSCEs
with 14 shots (8 at the summit vent) which still meet the initial
selection criteria.

RECORDED ACTIVITY

Fuego volcano, aside from being located on an overriding plate
of a subduction zone is also situated relatively near the triple
junction between the North American, Cocos, and Caribbean
plates, which provides a large amount of tectonic activity to

FIGURE 4 | (A) Map of final locations of 5 PWSCEs (boxes and numbers), 7

other events (dots) and 14 shots (asterisk), all based on 1-D P-wave velocity

model. Dark triangles represent stations with positive corrections, light

triangles represent stations with negative corrections. (B) North-South cross

section through Fuego vent, sharing latitude coordinates with (A). (C)

East-West cross section through Fuego vent, sharing longitude coordinates

with (A). (D) 1-D velocity model (E) Histogram of RMS errors for the events (F)

Corrections applied to each station in final 1D model.
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separate out from the volcanogenic seismicity in any seismic
dataset collected at the site. From the 17th to the 23rd of January
2012, there were 75 magnitude 3.0 earthquakes and above within
5 radial degrees of Fuego’s summit in the USGS Preliminary
Determination of Epicenters (PDE) Bulletin (U. S. Geological
Survey, 2017). Eight produce large peaks in real-time seismic
amplitude measurements (RSAM) (Endo and Murray, 1991),
and of the 34 individual measurements above 50 µm/s on an
RSAM plot produced from the vertical component of station
NE1, only 13 are due to volcanic processes, 12 from two episodes
of tremor, and one from an actual summit emission (Figure 5A).
A similar plot of RSAM recorded on INSIVUMEH’s permanent,
short period station FG3 showsmany of the same general features
present in the record from the closer broadband instrument. Two
differences stand out: first the much lower signal to noise ratio
present at NE1, and second the much smaller contribution of
tremor amplitudes (Figure 5B). Units are in counts for FG3 as
we were not able to obtain an accurate instrument response for
the permanent station.

FIGURE 5 | Real-time Seismic Amplitude Measurement (RSAM) from station

NE1 (A) and FG3 (B,C). Each sample in a and b is the mean amplitude of a

60 s, non-overlapping window of data, high pass filtered at 1Hz. Gray dashed

lines are regional tectonic earthquakes, with associated numbers reporting

RSAM values (in µm/s for NE1 and uncalibrated counts for FG3) and reported

magnitudes of regional tectonic earthquakes. Dotted lines represent peaks

generated by volcanic tremor and red line marks the largest observed

explosion. Solid gray horizontal line represents an arbitrary cutoff value, below

which individual peaks are not described in detail. (C) plots the daily averaged

RSAM from FG3 from January to September 2012. The green vertical bar

represents the time periods captured in (A,B).

Summit Emissions
Emissions from the summit of Fuego are the most obvious and
captivating activity we observed during our field occupation.
There were different types of emissions from two active
vents during the campaign; a “summit vent” and a “flank
vent.” Each vent exhibits impulsive onset, ash filled plumes,
as well as emergent onset, ash poor plumes of white color
(Figure 6). Signals from summit emissions are recorded across
the temporary network and on FG3. Larger explosions show
similar-shaped waveforms on all stations, but many even larger
degassing events do not register at FG3 due to a generally lower
signal to noise ratio at the farther station.

Even though the locations of these emissions appear spatially
constant throughout our time in the field, the seismic waveforms
generated by these explosions are very diverse. Inter-event
times are very sporadic and do not show any correlation with
amplitudes in the seismic or acoustic records, nor do plume type,
location, or height from visual records. Some emissions have been
linked to distinct types of very long period waveforms in previous
work (Lyons and Waite, 2011; Nadeau et al., 2011; Waite et al.,
2013; Waite and Lanza, 2016) and we continue to see these types
of events in 2012. Further examination of these types of very
long period events will be discussed in a future publication and
is outside the scope of this current study.

Tremor
Volcanic tremor has been observed at many volcanoes worldwide
and is a broad term covering seismic signals of sustained
amplitudes (Konstantinou and Schlindwein, 2003; Chouet and
Matoza, 2013). As noted above, tremor at Fuego makes the
largest contributions to RSAM measurements of the volcanic
processes we observed during our field campaign. We identify
two types of tremor during the period of observation. First,
broad band tremor with energy between 0.5 and 8Hz occurs
at different intervals throughout the dataset, lasting anywhere
from 2min to over an hour. Second, narrow band harmonic
tremor with a fundamental frequency somewhere between 0.5
and 2Hz with anywhere from three to eight overtones (Figure 7).
Short, less than 100 s duration episodes are common, as well
as episodes lasting longer than 30min. Both long and short
duration harmonic tremor exhibits non-stationary fundamental
frequencies shifting as much as 2Hz, easily identifiable by the
strong gliding of overtone frequencies over time. Tremor is
visible at the FG3 station, but with lower amplitudes than signals
generated by other activity when compared with temporary
network stations. Additionally, all but the first two overtones in
episodes of harmonic tremor were absent, presumably due to
attenuation of higher frequencies along the longer path to the
short period station from the summit.

The broadband and harmonic tremor episodes can happen
immediately after an explosive event or emerge out of
background signal independent of other activity, and other types
of activity occur simultaneously with both classes of tremor as
well. During several of the episodes of both types of tremor, we
observe steady white, ash poor emissions from the summit vent.
Flank vent emission is also possible, but not detectable due to the
positioning of the cameras.
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FIGURE 6 | Examples of summit emissions recorded at station NE1 plotted together with images from the time-lapse camera that was located near the seismic

station. The spectrogram of the vertical component is plotted above the trace of the same time. The lowest trace is from a collocated infrasound sensor. Trace units

are normalized. (A) Summit Impulsive (B) Flank Impulsive (C) Summit Emergent (D) Flank Emergent.

Rockfalls
Rockfalls are ubiquitous during the observation period, mostly
originating near the crater rim and proceeding down the
southern flanks to the barrancas below on the order of several
episodes an hour. Due to the lack of an active lava flow front,
most of the material is sourced from older cooling lava flow
terminal edges near the summit or from precariously perched
material from more recent explosive events from one of the
two active summit vents. Smaller rockfalls initiate at seemingly
random intervals due to instability inherent in the location of

the source materials, but most of the largest rockfalls take place
soon after explosive events being apparently dislodged. These
rockfalls posed a significant hazard to personnel during our field
campaign and aside from the terrain itself proved the second
largest limiting factor in where stations were ultimately located
during the occupation.

The fact that most rockfalls occurred to the southwest meant
that our time lapse cameras did not capture any good examples
of this type of activity. The rockfalls are easily distinguishable in
the seismic records though due to the frequency content being
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FIGURE 7 | Examples of (A) broadband tremor and (B) harmonic tremor recorded at station NE1 plotted together with images from the time-lapse camera that was

located near the seismic station. The spectrogram of the vertical component is plotted above the trace of the same time. The lowest trace is from a collocated

infrasound sensor. Trace units are normalized.

almost exclusively above 10Hz which distinguishes rockfalls
from tremor, the emergent onset of the events followed by a
ringing coda, a lack of infrasound signal, and the much larger
amplitudes of the events on the stations located to the south
(Figure 8). The choice of requiring 5 stations to simultaneously
trigger to add an event to the catalog was also determined
specifically to avoid detecting large amplitude rockfalls. Rockfalls
are visible on the FG3 station, but most of the rockfalls activity
while the temporary network was operating took place down
the southwest flank away from the FG3 station and is therefore
difficult to distinguish at FG3 from background signals without a
simultaneous examination of the network stations.

Phase-Weighted Stacks of Clustered
Events
Repeating seismic events in volcanic settings can highlight
important physical processes. Interestingly, each of the PWSCEs
show distinct signal characteristics (Figure 3), and none of the
events within the stacks correspond with any type of consistent
concurrent observed surface activity. We demean, apply a cosine
taper, and apply a two pole, 0.5–5Hz Butterworth filter forward
and backwards (effectively creating a four pole filter) to each
signal, and then demean again each detected event in a cluster
before creating the phase-weighted stack. In each of the events,
the southern stations showmarkedly lower amplitude signals and
later onsets when compared to signals recorded on the northern
portion of the temporary network, which is consistent with the
events occurring near the vent.

PWSCE1
The first cluster contains 96 separate events (Figure 9A). The
stack shows a small amplitude positive vertical first motion and
negative first motion in the radial direction on all stations where
a clear first motion is observable. On the NE1 and NW1 stations,
a larger amplitude pulse follows for two cycles, and these cycles
are identifiable on the SE1 and SW1 stations with much weaker
amplitudes. The event shows high energy from 0.5 to 4Hz at the
onset and tapers down to 1–3Hz after the first 2 s.

PWSCE2
The second cluster contains 22 separate events (Figure 9B). Low
amplitude positive vertical motions precede a strong negative
vertical motion at the onset of the event along with pulses away
from the vent on the horizontal channels. The NW1 and NE1
stations record three similar cycles which are obscured and have
a longer duration and almost ringing coda on the southern
stations. All stations record a 1Hz signal immediately prior to
the main large amplitude signal which then extends from 0.5 to
3Hz lasting 30 s.

PWSCE3
The third cluster contains 44 separate events (Figure 10A). The
event shows a small amplitude positive first motion on all
vertical channels as well as first motions away from the vent
on the horizontal channels with several higher amplitude cycles
following on all channels. A 1Hz signal persists through the event
and leads the main body of the signal which is distributed from
1.5 to 3Hz, with much less energy below 1.5Hz.
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FIGURE 8 | Example of a rockfall recorded at station NE1 and SW1, and peak frequencies determined with FFT of events detected with STA/LTA algorithm at each

station showing rockfall being detected on SW1 station.

PWSCE4
The fourth cluster contains 7 separate events (Figure 10B). The
beginning of this signal stack is quite noisy on the NW1 vertical
station, and the signal stack is more emergent in nature which
makes selecting a clear first motion in any direction difficult.
The clearest station is the NE1, and that first arrival is small
amplitude positive in the vertical direction. This same pulse can
be matched on the NW1 station, with the horizontal channels
showing a direction away from the vent at the same time. The
spectrograms of the event on the different network station show
the main energy arriving several seconds later at the southern
stations compared with the northern ones, despite similar onset
times in general. The spectrograms also show signal energy from
below 0.5 to over 5Hz despite the bandpass filter having been
applied to each constituent of the stack.

PWSCE5
The fifth cluster contains 14 separate events (Figure 11). This
signal is the most emergent of all the stacks, and as such was

also the hardest to pick a clear first arrival or true first motion
polarity. The event appears to have a small amplitude packet of
energy appearing on all the stations. Unfortunately, upon closer
inspection of themember events, this early signal does not appear
to be consistent across all the events but rather a contaminating
feature from one event. The spectrogram shows a strong band
of energy at about 0.5Hz for the duration of the event, with
energy distributed through 4Hz, and showing another brief peak
of energy near 2.5Hz lasting only 3 or 4 s.

DISCUSSION

Velocity Modeling
We make full use of the user controls allowed by VELEST
to ensure that we arrive at a true minimum 1-D velocity
model as defined by Kissling et al. (1994). We vary model
damping parameters systematically for station correction,
velocity, and earthquake locations and find the results are
comparable over a wide range of parameters. Changing the
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FIGURE 9 | (A) Top Row—PWSCE1 traces. Middle Row-Zoom-in of stacked signal onset. Bottom row-Spectrogram (5.12 s sample Parzen window with 80%

overlap and 512 point nfft) of PWSCE1. (B) Top Row—PWSCE2 traces. Middle Row—Zoom-in of stacked signal onset. Bottom row—Spectrogram (5.12 s sample

Parzen window with 80% overlap and 512 point nfft) of PWSCE2.

reference station does not appreciably change the relative
corrections between stations in the network, instead only shifting
absolute values. For example, if we choose the station which
observes most arrivals first or last as the reference station,
all other network station corrections are positive or negative
respectively. If we choose the reference station as a station
observing arrivals somewhere after and before other stations
in the network, the station corrections distribute more evenly
between negative and positive. The variations between modeled

velocities of the top model layer reflects the effect of these
shifts.

The station corrections we see make sense in the geologic
context of Fuego with the stations to the north generally
showing negative corrections and therefore faster velocities.
We expect this material to be older and to have survived at
least one hypothesized edifice collapse (Chesner and Halsor,
1997), meaning it should be physically more compacted and
coherent than material to the south. The NE1 station seems to be
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FIGURE 10 | (A) Top Row—PWSCE3 traces. Middle Row—Zoom-in of stacked signal onset. Bottom row—Spectrogram (512 sample window with 80% overlap) of

PWSCE3. (B) Top Row—PWSCE4 traces. Middle Row—Zoom-in of stacked signal onset. Bottom row—Spectrogram (512 sample window with 80% overlap) of

PWSCE4.

particularly fast, but despite looking at various events for possible
miss-picks, arrivals do seem to reach this station consistently
earlier than others in the network. The variability of material
that we had to dig through during station installation would lead
us to expect some site effect differences, but the large variability
between adjacent stations must be reflecting a very complex
three-dimensional velocity structure that we can only hope to
approximate with a minimum 1-D model.

In our early runs, we saw velocities in the upper layers
consistently falling to nearly 300 ms−1 whilst reporting station

correction factors above 5 s. Adding shots as model inputs keeps
velocities in the upper layers of the model higher, and more
geologically plausible. The lack of consistently clear arrivals for
input to VELEST is the greatest obstacle to minimizing error in
event locations, as very few events have sufficiently clear arrivals
to pick on all nine stations in the temporary network.

Event Locations and Network Resolution
The event locations we report above must be understood in
the context of the errors propagated along with the modeling
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FIGURE 11 | Top Row—PWSCE5 traces. Middle Row—Zoom-in of stacked signal onset. Bottom row—Spectrogram (512 sample window with 80% overlap) of

PWSCE5.

procedure. Hypocenter location errors for each event located
with VELEST single event mode are between 110 and 480m
despite selecting only the most reliable events. We therefore turn
to different parts of the modeling process to give us information
on how reliable the locations of each earthquake might be, such
as tracking the earthquake locations throughout the modeling
process.

Events show general trends throughout the modeling
procedure. For instance, events which locate in the center of the
network in the final model consistently end up in the center of the
network with very little variation in the horizontal or the vertical
directions. Events which show strong impulsive infrasound
signals associated with explosive events but not captured on any
of the time-lapse cameras are given a starting location directly
below the summit vent, but at 0m of elevation, which due to
Antelope’s lack of topography indicated the surface. These events
migrated successively closer to the top of the topography at
each step of the velocity modeling, indicating a trend to stable
locations near the top of the cone.

The only events with an azimuthal gap greater than 180◦ that
we did not eliminate from the data set through all phases of
velocity modeling were the PWSCEs, which consistently locate
closer to the north stations of the network. Because no consistent
surface activity occurs in the time-lapse images 1min before and
3min after those arrival times, we believe that these repeating
events are being generated by subsurface processes not previously
observed. However, the lack of any observed activity in this area
at Fuego in the years following our field campaign, along with the
large arrival timing errors leads us to doubt the accuracy of these
locations, which we infer to be restricted to Fuego’s active cone.

We gain critical insight to the model space by selecting for our
updated a-priori 1-D model one which minimizes both the RMS
error of the run as well as the lowest average station corrections

for all nine stations. In early runs, the events consistently locate
much shallower in the cone, and stayed closer to the vent. Station
corrections are much more reasonable with a full network spread
around three tenths of a second as opposed to almost a whole
second with the initial method of only minimizing RMS of
the model. Solutions also stabilize more quickly and show less
variability based on the initial reference station. This change
greatly increases our confidence in the velocity model reported
in Figure 4, even if the locations are still not accurate beyond
restricting event locations to within the cone.

Two single events which were well constrained from Antelope
still located north of the network, and despite the persistence
of these locations, the temporary network could not confidently
constrain them. The last reported activity in the Acatenango
portion of the massif was a series of phreatic eruptions which
occurred in 1972 (Vallance et al., 2001), so seismic activity
would not be unthinkable. Given the level of tourist activity
on Acatenango, even a minor episode would potentially pose
a risk to the dozens of people hiking the volcano on any
given day. Differentiating these signals from other events in
the Fuego vicinity would be even more difficult given that the
whole complex is only continuously monitored by one short
period station operated by INSIVUMEH. These eventsmay occur
deeper in the system but the depths cannot be constrained due
to limitations in the temporary stations network aperture, and
unmodeled complexity in the true three-dimensional velocity
structure.

The five groups of similar events are likely driven by
similar sources, although their waveform characteristics are
quite different. The particle motions of the main amplitude
pulse from the dominant cluster, PWSCE1, shows distinctly
retrograde motion (Figure 12) indicating a prominent Rayleigh
wave arrival. The shallow location of this event, coupled with the
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FIGURE 12 | The top portion of the figure shows the vertical traces of the

phase-weighted stack for event cluster 1 at four stations (distances are from

station to summit vent) with the P and possible SV wave arrivals highlighted in

solid black, the green and the red highlight the down going swing and

following cycle of the dominant Rayleigh wave, while the bottom of the figure

shows polar plots of particle motion normalized to the maximum amplitude of

each trace at each station, showing the retrograde motion.

pulse-like signal which decays further from the vent and lower
frequency content of the main pulse are remarkably similar to
shallow events recorded at Mount Etna, Turrialba, and Ubinas
(Bean et al., 2014; Chouet and Dawson, 2016). While we were
unable to reliably model this event given the relatively large
distance to the nearest stations south of summit, the similarity
of the waveforms to those of the well-modeled events at Etna
suggests these repeating events likely result from a similar
mechanism. Given that Chouet and Dawson (2016) favor fluid-
driven sources over a slow rupture dislocations due to better
cross-correlation values between recorded data and generated
synthetics, we interpret this as a rapid increase in gas pressure
within a crack very near the surface. The other event clusters
did not have the same dominant Rayleigh wave pulse but their
locations within the cone suggest a gas or magma-driven process.
However, the short observation period and lack of drastic changes
in activity do not allow us to test for temporal evolution of
events which would be predicted in a slow brittle failure of poorly
consolidated volcanic rock (Bean et al., 2014), again limiting
the strength of our conclusions. Figures for the remaining four
phase-weighted stacks of clustered events are included in the
Supplementary Material.

It should be noted that we tried to identify events from
the time windows around the phase-weighted stacks of events
on the FG3 short period station operated by INSIVUMEH
(Figure 1), but the low signal to noise ratio at the recording
site made positive event identification impossible even in the
stacked data. Adding arrivals from this station would have
significantly increased our network aperture and the accuracy of
deep earthquake locations, but for the velocity modeling section
of this study the recordings at FG3 did not provide any helpful
information.

While the occurrence of families of small seismic events
suggests repetitive processes, another result this investigation

highlights is the complexity of the explosions themselves. As
noted above, similar surficial expressions exhibit markedly
different seismic signatures. One explanation for this scenario
would be that the conduit seals or partially seals between
eruptions. Differences in the structure of each seal, how the
seal forms, and where and how dramatically the seal fails
would all produce different waveforms despite similar locations
and otherwise constant inputs from the broader system. Our
observations support the eruption mechanism proposed by
Nadeau et al. (2011) of a crystal rich mush solidifying and
capping the vent, allowing pressures to build until the cap fails
mechanically and allows material to escape.

Finally, we attempt to classify seismic events which are
associated with explosions and differentiate them from
those which are not. Interestingly, none of the events show
distinguishing characteristics in frequency content, duration,
or impulsiveness of onset; they only differ substantially in
whether or not they have an accompanying infrasound signal.
But unfortunately, even the presence of an infrasound signal is
not always a reliable indicator of strictly subsurface activity as
several observed events with varying plume volumes occurred
without measured acoustic signals.

Repose Period Analysis
The details of individual events such as their locations and
waveform characteristics can provide information about the
processes responsible. Similarly, a detailed catalog of seismicity
can be used to illuminate driving processes more broadly
through relatively simple statistics. Varley et al. (2006) apply
statistical time-series analysis to volcanic activity at Colima,
Tungurahua, Karymsky, and Mt. Erebus volcanoes. The authors
show that different periods of activity can be distinguished by
the distributions of the repose periods between events and event
types. Data are classified as stationary or showing periodicity,
clustering, or a trend, which points to events governed by
constant processes independent of time or the competition
between different processes. If each interval is independent of the
one preceding it, the distribution of interval times is exponential
and the governing processes in Poissonian in nature. One way
to test for Poisson processes is to calculate the coefficient of
variation, which is the standard deviation of the between events
στ , divided by the mean interevent time τ , or Cv =

στ

τ

(Equation 1).
The governing process is Poissonian if Cv = 1 and clustered

if Cv > 1. We calculate these values from interevent times from
several sources which can be found in Table 1. Most of the
measures of Cv are slightly greater than 1, and like Varley et al.
(2006), we report lower coefficients of variation in subdivided
event families. Differences in Cv imply distinct processes driving
the activity, we see the largest difference when separating events
by vent of origin or type of event (explosive vs. degassing).
Degassing events in our dataset appear Poissonian and explosive
events appear clustered. This fits well with a model of constantly
degassing magma (Andres et al., 1993; Rodríguez et al., 2004;
Lyons, 2011; Nadeau et al., 2011; Waite et al., 2013). However,
the relatively short observation period, and therefore small
sample number limits our ability to report distributions with any
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TABLE 1 | The mean, standard deviation, and coefficient of variation of the

lengths of inter-event times.

Source of times Events τ

hh:mm:ss.sss

στ

hh:mm:ss.sss

Cv

Antelope origins 929 00:12:07.309 00:14:34.190 1.201952

NE1 arrivals 936 00:12:13.600 00:14:50.049 1.213263

Visual events 448 00:14:28.208 00:17:34.419 1.214477

Summit events 333 00:21:02.250 00:31:11.036 1.482303

Flank events 102 00:44:31.845 00:52:08.882 1.171057

Explosive events 277 00:19:16.383 00:23:53.000 1.239154

Degassing events 108 00:31:44.254 00:31:57.489 1.006951

Summit explosions 95 00:26:18.000 00:33:58.000 1.291190

Summit degassing 84 00:35:01.697 00:31:56.294 0.911784

Flank explosions 69 00:45:48.000 00:55:29.999 1.211767

Flank degassing 13 01:24:50.824 01:18:12.434 0.921744

PWSCE1 96 01:46:40.672 02:31:26.255 1.419578

All times are from the start of first event to the start of next event. The top two rows are

seismic arrival times for events detected on five or more stations in the network. Antelope

Origins are event origin times as determined by Antelope’s dbgrassoc program using the

iasp91 velocity model. NE1 Arrivals are human picked event arrival times from station NE1.

Remaining rows are seismic arrival times on station NE1 of visually observed events and

subsets thereof.

confidence. Increasing the catalog size would help to provide
more confident interpretations in the future.

Further investigation of the types of governing processes
active at Fuego during periods of background activity
through time lapse imagery and seismic event timing from
computationally cheap algorithms can extend the analysis to
periods of years. For example, recent work by Castro-Escobar
(Castro-Escobar, 2017) showed that Fuego’s paroxysmal
eruptions are statistically independent in time, suggesting that
the system recovers to a background state between each eruption.
This makes understanding the characteristics of that background
state all the more important.

A Foundation for Improved Eruption
Forecasting
This analysis provides an example of the important information
that is useful for starting the process of eruption forecasting.
Many volcanoes throughout the world are monitored by one or
fewer stations, and while monitoring agencies are adept at using
minimal amounts of data to keep local populations safe, it is clear
that a better understanding of the monitoring data should yield
better forecasts. Ketner and Power (2013) show an example of
how close examination of seismicity recorded on a single station
during Redoubt volcano’s 2009 eruption can provide a richer
understanding of the progression of an eruptive event.

In the case of Fuego volcano, INSIVUMEH relies on
observers who live on the volcano’s flanks together with real-
time seismic data from a short-period station about 6 km
southeast of the summit. Fuego’s larger “paroxysmal eruptions”
can produce pyroclastic density currents that threaten nearby
population centers and ash clouds that threaten aircraft. While
INSIVUMEH has been successful using this approach, we sought

to provide more detail that could be incorporated into a better
understanding of the volcano in the future. Being able to compare
contemporaneously recorded signals at FG3 and a network of
stations closer to the vent clarifies the sources of some of the
more striking features and increases confidence in classifying
activity as an explosion or local rockfalls. It also sheds light
on information missing from this record, which could aid in
interpreting increases in activity prior to paroxysmal activity.

In cases where only a single station is responsible for
monitoring an entire volcano, insights from temporary
instrument deployments can shed light on signals recorded at
the permanent station and clarify sources of ambiguous signals.
Rodgers et al. (2015) provide an example at Telica volcano in
Nicaragua of using seismic records and eruption observations to
classify activity as belonging to either stable (permitting open-
system degassing) or unstable (where open-system degassing
cannot be maintained) phases. This example highlights an
instance where low levels of seismicity, normally associated with
quiescence can in some cases portend more dangerous activity.
In cases where no permanent monitoring happens, temporary
deployments during periods of quiescence can provide a baseline
for comparison if activity later increases and requires further
study to determine if that increased activity could become
hazardous.

CONCLUSIONS

Our proposed template for a temporary monitoring network
starts with selecting sites to ensure adequate radial coverage
around a volcano. Visual observations recorded by time lapse
cameras help aid later interpretation. Ideally, the observation
period is as long as possible, but even a short time can
be leveraged for deeper understanding. Data analysis should
begin with classifying different types of emissions, if any, and
identifying signals which do not manifest as surface activity.
Utilizing a pattern identification algorithm, in our case, REDPy,
and identifying a 1-D velocity model can be quickly and easily
done following our methods.

Several results are reported. First, by classifying local seismic
signals based on observed surface activity, we can be more
confident in knowing what is happening on the volcano even
when visibility is poor. Second, we have identified repeating
events not directly tied to surface activity which is evidence
that the volcanic plumbing system includes some level of
complexity which should be further investigated. Third, despite
the difficulties of constraining exact arrivals for most events in
our catalog, we identify a reasonable 1-D velocity model which
can itself serve as a starting point for future analysis, and we can
be more confident in this model due to the exhaustive analysis
done to produce it.

This work provides examples of analytical operations which
can help to establish baseline levels of activity at open vent
volcanic systems. The challenge with these systems from a
monitoring standpoint is that precisely because of their relatively
low levels of activity, forecasting changes in activity often comes
down to paying attention to small details and how they relate to
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one another. Without a baseline to compare to, forecasting can
never be more helpful than simply guessing based on experiences
at other volcanoes.
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