614 research outputs found

    A reduction in sedentary behaviour in obese women during pregnancy reduces neonatal adiposity: the DALI randomised controlled trial

    Get PDF
    Aims/hypothesis: Offspring of obese women are at increased risk of features of the metabolic syndrome, including obesity and diabetes. Lifestyle intervention in pregnancy might reduce adverse effects of maternal obesity on neonatal adiposity. Methods: In the Vitamin D And Lifestyle Intervention for Gestational Diabetes Mellitus (GDM) Prevention (DALI) lifestyle trial, 436 women with a BMI ≥29 kg/m2 were randomly assigned to counselling on healthy eating (HE), physical activity (PA) or HE&PA, or to usual care (UC). In secondary analyses of the lifestyle trial, intervention effects on neonatal outcomes (head, abdominal, arm and leg circumferences and skinfold thicknesses, estimated fat mass, fat percentage, fat-free mass and cord blood leptin) were assessed using multilevel regression analyses. Mediation of intervention effects by lifestyle and gestational weight gain was assessed. Results: Outcomes were available from 334 neonates. A reduction in sum of skinfolds (−1.8 mm; 95% CI −3.5, −0.2; p = 0.03), fat mass (−63 g; 95% CI −124, −2; p = 0.04), fat percentage (−1.2%; 95% CI −2.4%, −0.04%; p = 0.04) and leptin (−3.80 μg/l; 95% CI −7.15, −0.45; p = 0.03) was found in the HE&PA group, and reduced leptin in female neonates in the PA group (−5.79 μg/l; 95% CI −11.43, −0.14; p = 0.05) compared with UC. Reduced sedentary time, but not gestational weight gain, mediated intervention effects on leptin in both the HE&PA and PA groups. Conclusions/interpretation: The HE&PA intervention resulted in reduced adiposity in neonates. Reduced sedentary time seemed to drive the intervention effect on cord blood leptin. Implications for future adiposity and diabetes risk of the offspring need to be elucidated. Trial registration: ISRCTN70595832

    Automated Classification of Sloan Digital Sky Survey (SDSS) Stellar Spectra using Artificial Neural Networks

    Full text link
    Automated techniques have been developed to automate the process of classification of objects or their analysis. The large datasets provided by upcoming spectroscopic surveys with dedicated telescopes urges scientists to use these automated techniques for analysis of such large datasets which are now available to the community. Sloan Digital Sky Survey (SDSS) is one of such surveys releasing massive datasets. We use Probabilistic Neural Network (PNN) for automatic classification of about 5000 SDSS spectra into 158 spectral type of a reference library ranging from O type to M type stars.Comment: 27 pages, 11 figures To appear in Astrophys. Space Sci., 200

    Novel indole-thiazolidinone conjugates: Design, synthesis and whole-cell phenotypic evaluation as a novel class of antimicrobial agents

    Get PDF
    In connection with our research program on the development of novel anti-tubercular candidates, herein we report the design and synthesis of two different sets of indole-thiazolidinone conjugates (8a,b; 11a-d) and (14a-k; 15a-h). The target compounds were evaluated for their in vitro antibacterial and antifungal activities against selected human pathogens viz. Staphylococcus aureus (Gram positiveve), Pseudomonas aeruginosa, Escherichia coli (Gram negative), Mycobacterium tuberculosis (Acid-fast bacteria), Aspergillus fumigates and Candida albicans (fungi). Moreover, eukaryotic cell-toxicity was tested via an integrated ex vivo drug screening model in order to evaluate the selective therapeutic index (SI) towards antimicrobial activity when microbes are growing inside primary immune cells. Also, the cytotoxicity towards a panel of cancer cell lines and human lung fibroblast normal cell line, WI-38 cells, was explored to assure their safety. Compound 15b emerged as a hit in this study with potent broad spectrum antibacterial (MIC: 0.39-0.98 µg/ml) and antifungal (MIC: 0.49-0.98 µg/ml) activities, in addition to its ability to kill mycobacteria M. aurum inside an infected macrophage model with good therapeutic window. Moreover, compound 15b displayed promising activity towards resistant bacteria strains MRSA and VRE with MIC values equal 3.90 and 7.81 µg/mL, respectively. These results suggest compound 15b as a new therapeutic lead with good selectivity for further optimization and development

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    Utilization of COVID-19 Treatments and Clinical Outcomes among Patients with Cancer: A COVID-19 and Cancer Consortium (CCC19) Cohort Study.

    Get PDF
    Among 2,186 U.S. adults with invasive cancer and laboratory-confirmed SARS-CoV-2 infection, we examined the association of COVID-19 treatments with 30-day all-cause mortality and factors associated with treatment. Logistic regression with multiple adjustments (e.g., comorbidities, cancer status, baseline COVID-19 severity) was performed. Hydroxychloroquine with any other drug was associated with increased mortality versus treatment with any COVID-19 treatment other than hydroxychloroquine or untreated controls; this association was not present with hydroxychloroquine alone. Remdesivir had numerically reduced mortality versus untreated controls that did not reach statistical significance. Baseline COVID-19 severity was strongly associated with receipt of any treatment. Black patients were approximately half as likely to receive remdesivir as white patients. Although observational studies can be limited by potential unmeasured confounding, our findings add to the emerging understanding of patterns of care for patients with cancer and COVID-19 and support evaluation of emerging treatments through inclusive prospective controlled trials. SIGNIFICANCE: Evaluating the potential role of COVID-19 treatments in patients with cancer in a large observational study, there was no statistically significant 30-day all-cause mortality benefit with hydroxychloroquine or high-dose corticosteroids alone or in combination; remdesivir showed potential benefit. Treatment receipt reflects clinical decision-making and suggests disparities in medication access.This article is highlighted in the In This Issue feature, p. 1426

    Adaptive preconditioning in neurological diseases -­ therapeutic insights from proteostatic perturbations

    Get PDF
    International audienceIn neurological disorders, both acute and chronic neural stress can disrupt cellular proteostasis, resulting in the generation of pathological protein. However in most cases, neurons adapt to these proteostatic perturbations by activating a range of cellular protective and repair responses, thus maintaining cell function. These interconnected adaptive mechanisms comprise a 'proteostasis network' and include the unfolded protein response, the ubiquitin proteasome system and autophagy. Interestingly, several recent studies have shown that these adaptive responses can be stimulated by preconditioning treatments, which confer resistance to a subsequent toxic challenge - the phenomenon known as hormesis. In this review we discuss the impact of adaptive stress responses stimulated in diverse human neuropathologies including Parkinson´s disease, Wolfram syndrome, brain ischemia, and brain cancer. Further, we examine how these responses - and the molecular pathways they recruit - might be exploited for therapeutic gai

    Current and Future Prospects of Nitro-compounds as Drugs for Trypanosomiasis and Leishmaniasis

    Get PDF

    Sq and EEJ—A Review on the Daily Variation of the Geomagnetic Field Caused by Ionospheric Dynamo Currents

    Full text link

    Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma

    Get PDF
    SummaryWe report a comprehensive molecular characterization of pheochromocytomas and paragangliomas (PCCs/PGLs), a rare tumor type. Multi-platform integration revealed that PCCs/PGLs are driven by diverse alterations affecting multiple genes and pathways. Pathogenic germline mutations occurred in eight PCC/PGL susceptibility genes. We identified CSDE1 as a somatically mutated driver gene, complementing four known drivers (HRAS, RET, EPAS1, and NF1). We also discovered fusion genes in PCCs/PGLs, involving MAML3, BRAF, NGFR, and NF1. Integrated analysis classified PCCs/PGLs into four molecularly defined groups: a kinase signaling subtype, a pseudohypoxia subtype, a Wnt-altered subtype, driven by MAML3 and CSDE1, and a cortical admixture subtype. Correlates of metastatic PCCs/PGLs included the MAML3 fusion gene. This integrated molecular characterization provides a comprehensive foundation for developing PCC/PGL precision medicine
    corecore