229 research outputs found
Multiple superconducting gap and anisotropic spin fluctuations in iron arsenides: Comparison with nickel analog
We present extensive 75As NMR and NQR data on the superconducting arsenides
PrFeAs0.89F0.11 (Tc=45 K), LaFeAsO0.92F0.08 (Tc=27 K), LiFeAs (Tc = 17 K) and
Ba0.72K0.28Fe2As2 (Tc = 31.5 K) single crystal, and compare with the nickel
analog LaNiAsO0.9F0.1 (Tc=4.0 K) . In contrast to LaNiAsO0.9F0.1 where the
superconducting gap is shown to be isotropic, the spin lattice relaxation rate
1/T1 in the Fe-arsenides decreases below Tc with no coherence peak and shows a
step-wise variation at low temperatures. The Knight shift decreases below Tc
and shows a step-wise T variation as well. These results indicate spinsinglet
superconductivity with multiple gaps in the Fe-arsenides. The Fe
antiferromagnetic spin fluctuations are anisotropic and weaker compared to
underdoped copper-oxides or cobalt-oxide superconductors, while there is no
significant electron correlations in LaNiAsO0.9F0.1. We will discuss the
implications of these results and highlight the importance of the Fermi surface
topology.Comment: 6 pages, 11 figure
Hamiltonian Study of Improved Lattice Gauge Theory in Three Dimensions
A comprehensive analysis of the Symanzik improved anisotropic
three-dimensional U(1) lattice gauge theory in the Hamiltonian limit is made.
Monte Carlo techniques are used to obtain numerical results for the static
potential, ratio of the renormalized and bare anisotropies, the string tension,
lowest glueball masses and the mass ratio. Evidence that rotational symmetry is
established more accurately for the Symanzik improved anisotropic action is
presented. The discretization errors in the static potential and the
renormalization of the bare anisotropy are found to be only a few percent
compared to errors of about 20-25% for the unimproved gauge action. Evidence of
scaling in the string tension, antisymmetric mass gap and the mass ratio is
observed in the weak coupling region and the behaviour is tested against
analytic and numerical results obtained in various other Hamiltonian studies of
the theory. We find that more accurate determination of the scaling
coefficients of the string tension and the antisymmetric mass gap has been
achieved, and the agreement with various other Hamiltonian studies of the
theory is excellent. The improved action is found to give faster convergence to
the continuum limit. Very clear evidence is obtained that in the continuum
limit the glueball ratio approaches exactly 2, as expected in a
theory of free, massive bosons.Comment: 13 pages, 15 figures, submitted to Phys. Rev.
The ARGO-YBJ Experiment Progresses and Future Extension
Gamma ray source detection above 30TeV is an encouraging approach for finding
galactic cosmic ray origins. All sky survey for gamma ray sources using wide
field of view detector is essential for population accumulation for various
types of sources above 100GeV. To target the goals, the ARGO-YBJ experiment has
been established. Significant progresses have been made in the experiment. A
large air shower detector array in an area of 1km2 is proposed to boost the
sensitivity. Hybrid detection with multi-techniques will allow a good
discrimination between different types of primary particles, including photons
and protons, thus enable an energy spectrum measurement for individual specie.
Fluorescence light detector array will extend the spectrum measurement above
100PeV where the second knee is located. An energy scale determined by balloon
experiments at 10TeV will be propagated to ultra high energy cosmic ray
experiments
Charm multiplicity and the branching ratios of inclusive charmless b quark decays in the general two-Higgs-doublet models
In the framework of general two-Higgs-doublet models, we calculate the
branching ratios of various inclusive charmless b decays by using the low
energy effective Hamiltonian including next-to-leading order QCD corrections,
and examine the current status and the new physics effects on the determination
of the charm multiplicity and semileptonic branching ratio .
Within the considered parameter space, the enhancement to the ratio due to the charged-Higgs penguins can be as large as a factor of 8 (3) in
the model III (II), while the ratio can be increased from
the standard model prediction of 2.49% to 4.91% (2.99%) in the model III (II).
Consequently, the value of and can be decreased simultaneously
in the model III. The central value of will be lowered slightly by
about 0.003, but the ratio can be reduced significantly from the
theoretical prediction of in the SM to , for GeV, respectively. We find that
the predicted and the measured now agree within roughly one
standard deviation after taking into account the effects of gluonic charged
Higgs penguins in the model III with a relatively light charged Higgs boson.Comment: 25 pages, Latex file, axodraw.sty, 6 figures. Final version to be
published in Phys.Rev.
Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation
The current status of electric dipole moments of diamagnetic atoms which
involves the synergy between atomic experiments and three different theoretical
areas -- particle, nuclear and atomic is reviewed. Various models of particle
physics that predict CP violation, which is necessary for the existence of such
electric dipole moments, are presented. These include the standard model of
particle physics and various extensions of it. Effective hadron level combined
charge conjugation (C) and parity (P) symmetry violating interactions are
derived taking into consideration different ways in which a nucleon interacts
with other nucleons as well as with electrons. Nuclear structure calculations
of the CP-odd nuclear Schiff moment are discussed using the shell model and
other theoretical approaches. Results of the calculations of atomic electric
dipole moments due to the interaction of the nuclear Schiff moment with the
electrons and the P and time-reversal (T) symmetry violating
tensor-pseudotensor electron-nucleus are elucidated using different
relativistic many-body theories. The principles of the measurement of the
electric dipole moments of diamagnetic atoms are outlined. Upper limits for the
nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained
combining the results of atomic experiments and relativistic many-body
theories. The coefficients for the different sources of CP violation have been
estimated at the elementary particle level for all the diamagnetic atoms of
current experimental interest and their implications for physics beyond the
standard model is discussed. Possible improvements of the current results of
the measurements as well as quantum chromodynamics, nuclear and atomic
calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for
EPJ
Measurement of the Atmospheric Muon Spectrum from 20 to 3000 GeV
The absolute muon flux between 20 GeV and 3000 GeV is measured with the L3
magnetic muon spectrometer for zenith angles ranging from 0 degree to 58
degree. Due to the large exposure of about 150 m2 sr d, and the excellent
momentum resolution of the L3 muon chambers, a precision of 2.3 % at 150 GeV in
the vertical direction is achieved.
The ratio of positive to negative muons is studied between 20 GeV and 500
GeV, and the average vertical muon charge ratio is found to be 1.285 +- 0.003
(stat.) +- 0.019 (syst.).Comment: Total 32 pages, 9Figure
B^0-\bar{B}^0 mixing and B \to X_s \gamma decay in the third type 2HDM: effects of NLO QCD contributions
In this paper, we calculated the next-to-leading order (NLO) new physics
contributions to the mass splitting \dmd and the branching ratio \brbxsga
induced by the charged Higgs loop diagrams in the third type of
two-Higgs-doublet models (model III) and draw the constraints on the free
parameters of model III. For the model III under consideration, we found that
(a) an upper limit |\ltt|\leq 1.7 is obtained from the precision data of
\dmd=0.502 \pm 0.007 ps^{-1}, while |\ltt| \approx 0.5 is favored
phenomenologicaly; (b) for decay, the NLO QCD contributions
tend to cancel the LO new physics contributions; (c) a light charged Higgs
boson with a mass around or even less than 200 GeV is still allowed at NLO
level by the measured branching ratio \brbxsga: numerically, 188 \leq \mh
\leq 215 GeV for (|\ltt|,|\lbb|)=(0.5,18); (d) the NLO QCD contributions
tend to cancel the LO contributions effectively, the lower limit on \mh is
consequently decreased by about 200 GeV; (e) the allowed region of \mh will
be shifted toward heavy mass end for a non-zero relative phase between
the Yukawa couplings \ltt and \lbb. The numerical results for the
conventional model II are also presented for the sake of a comparison.Comment: 42 pages, 18 eps figures, Revtex, new references adde
ARGO-YBJ constraints on very high energy emission from GRBs
The ARGO-YBJ (Astrophysical Radiation Ground-based Observatory at YangBaJing)
experiment is designed for very high energy -astronomy and cosmic ray
researches. Due to the full coverage of a large area () with
resistive plate chambers at a very high altitude (4300 m a.s.l.), the ARGO-YBJ
detector is used to search for transient phenomena, such as Gamma-ray bursts
(GRBs). Because the ARGO-YBJ detector has a large field of view (2 sr)
and is operated with a high duty cycle (90%), it is well suited for GRB
surveying and can be operated in searches for high energy GRBs following alarms
set by satellite-borne observations at lower energies. In this paper, the
sensitivity of the ARGO-YBJ detector for GRB detection is estimated. Upper
limits to fluence with 99% confidence level for 26 GRBs inside the field of
view from June 2006 to January 2009 are set in the two energy ranges 10100
GeV and 10 GeV1 TeV.Comment: accepted for publication in Astroparticle Physic
Cotton in the new millennium: advances, economics, perceptions and problems
Cotton is the most significant natural fibre and has been a preferred choice of the textile industry and consumers since the industrial revolution began. The share of man-made fibres, both regenerated and synthetic fibres, has grown considerably in recent times but cotton production has also been on the rise and accounts for about half of the fibres used for apparel and textile goods. To cotton’s advantage, the premium attached to the presence of cotton fibre and the general positive consumer perception is well established, however, compared to commodity man-made fibres and high performance fibres, cotton has limitations in terms of its mechanical properties but can help to overcome moisture management issues that arise with performance apparel during active wear.
This issue of Textile Progress aims to:
i. Report on advances in cotton cultivation and processing as well as improvements to conventional cotton cultivation and ginning. The processing of cotton in the textile industry from fibre to finished fabric, cotton and its blends, and their applications in technical textiles are also covered.
ii. Explore the economic impact of cotton in different parts of the world including an overview of global cotton trade.
iii. Examine the environmental perception of cotton fibre and efforts in organic and genetically-modified (GM) cotton production. The topic of naturally-coloured cotton, post-consumer waste is covered and the environmental impacts of cotton cultivation and processing are discussed. Hazardous effects of cultivation, such as the extensive use of pesticides, insecticides and irrigation with fresh water, and consequences of the use of GM cotton and cotton fibres in general on the climate are summarised and the effects of cotton processing on workers are addressed. The potential hazards during cotton cultivation, processing and use are also included.
iv. Examine how the properties of cotton textiles can be enhanced, for example, by improving wrinkle recovery and reducing the flammability of cotton fibre
- …