35 research outputs found

    LOFAR 144-MHz follow-up observations of GW170817

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society, Volume 494, Issue 4, June 2020, Pages 5110–5117, ©: 2020 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We present low-radio-frequency follow-up observations of AT 2017gfo, the electromagnetic counterpart of GW170817, which was the first binary neutron star merger to be detected by Advanced LIGO-Virgo. These data, with a central frequency of 144 MHz, were obtained with LOFAR, the Low-Frequency Array. The maximum elevation of the target is just 13.7 degrees when observed with LOFAR, making our observations particularly challenging to calibrate and significantly limiting the achievable sensitivity. On time-scales of 130-138 and 371-374 days after the merger event, we obtain 3σ\sigma upper limits for the afterglow component of 6.6 and 19.5 mJy beam1^{-1}, respectively. Using our best upper limit and previously published, contemporaneous higher-frequency radio data, we place a limit on any potential steepening of the radio spectrum between 610 and 144 MHz: the two-point spectral index α1446102.5\alpha^{610}_{144} \gtrsim -2.5. We also show that LOFAR can detect the afterglows of future binary neutron star merger events occurring at more favourable elevations.Peer reviewe

    Cassiopeia A, Cygnus A, Taurus A, and Virgo A at ultra-low radio frequencies

    Get PDF
    Context. The four persistent radio sources in the northern sky with the highest flux density at metre wavelengths are Cassiopeia A, Cygnus A, Taurus A, and Virgo A; collectively they are called the A-team. Their flux densities at ultra-low frequencies (< 100 MHz) can reach several thousands of janskys, and they often contaminate observations of the low-frequency sky by interfering with image processing. Furthermore, these sources are foreground objects for all-sky observations hampering the study of faint signals, such as the cosmological 21 cm line from the epoch of reionisation. Aims. We aim to produce robust models for the surface brightness emission as a function of frequency for the A-team sources at ultra-low frequencies. These models are needed for the calibration and imaging of wide-area surveys of the sky with low-frequency interferometers. This requires obtaining images at an angular resolution better than 15\u2033 with a high dynamic range and good image fidelity. Methods. We observed the A-team with the Low Frequency Array (LOFAR) at frequencies between 30 MHz and 77 MHz using the Low Band Antenna system. We reduced the datasets and obtained an image for each A-team source. Results. The paper presents the best models to date for the sources Cassiopeia A, Cygnus A, Taurus A, and Virgo A between 30 MHz and 77 MHz. We were able to obtain the aimed resolution and dynamic range in all cases. Owing to its compactness and complexity, observations with the long baselines of the International LOFAR Telescope will be required to improve the source model for Cygnus A further

    Sub-arcsecond imaging with the International LOFAR Telescope I. Foundational calibration strategy and pipeline

    Get PDF
    The International LOFAR Telescope is an interferometer with stations spread across Europe. With baselines of up to ~2000 km, LOFAR has the unique capability of achieving sub-arcsecond resolution at frequencies below 200 MHz. However, it is technically and logistically challenging to process LOFAR data at this resolution. To date only a handful of publications have exploited this capability. Here we present a calibration strategy that builds on previous high-resolution work with LOFAR. It is implemented in a pipeline using mostly dedicated LOFAR software tools and the same processing framework as the LOFAR Two-metre Sky Survey (LoTSS). We give an overview of the calibration strategy and discuss the special challenges inherent to enacting high-resolution imaging with LOFAR, and describe the pipeline, which is publicly available, in detail. We demonstrate the calibration strategy by using the pipeline on P205+55, a typical LoTSS pointing with an 8 h observation and 13 international stations. We perform in-field delay calibration, solution referencing to other calibrators in the field, self-calibration of these calibrators, and imaging of example directions of interest in the field. We find that for this specific field and these ionospheric conditions, dispersive delay solutions can be transferred between calibrators up to ~1.5° away, while phase solution transferral works well over ~1°. We also demonstrate a check of the astrometry and flux density scale with the in-field delay calibrator source. Imaging in 17 directions, we find the restoring beam is typically ~0.3′′ ×0.2′′ although this varies slightly over the entire 5 deg2 field of view. We find we can achieve ~80–300 μJy bm−1 image rms noise, which is dependent on the distance from the phase centre; typical values are ~90 μJy bm−1 for the 8 h observation with 48 MHz of bandwidth. Seventy percent of processed sources are detected, and from this we estimate that we should be able to image roughly 900 sources per LoTSS pointing. This equates to ~ 3 million sources in the northern sky, which LoTSS will entirely cover in the next several years. Future optimisation of the calibration strategy for efficient post-processing of LoTSS at high resolution makes this estimate a lower limit

    Low frequency array (lofar)- potential and challenges

    Get PDF
    The Low Frequency Array (LOFAR) is a large radio telescope based on phased array principles, distributed over several European countries with its central core in the Northern part of the Netherlands. LOFAR is optimized for detecting astronomical signals in the 30-80 MHz and 120 240 MHz frequency window. LOFAR detects the incoming radio signals by using an array of simple omni-directional antennas. The antennas are grouped in so called stations mainly to reduce the amount of data generated. More than forty stations will be built, mainly within a circle of 150 kilometres in diameter. But LOFAR stations will also be built in other European countries. The signals of all the stations are transported to the central processor facility, where all the station signals are correlated with each other, prior to imaging. In this chapter the signal processing aspects on system level will be presented. Methods to image the sky will be given and the mapping of these concepts to the LOFAR phase array radio telescope will be presented. Challenges will be addressed and potentials for further research will be presented.\ud \u

    Distributed correlators for interferometry in space

    Get PDF
    New and interesting science drivers have triggered a renewed interest in radio astronomy at ultra long wavelengths. However, at longer wavelengths (beyond 10 meters) ground-based radio astronomy is severely limited by earths ionosphere, in addition to man-made interferences and solar flares. An unequivocal solution to the problem is to establish a space based observatory for ultra low frequency (0.3MHz-30MHz) observations. In ground-based radio astronomy, interferometers comprising of widely spaced antennas are employed to enhance the sensitivity and angular resolution of the observations. The signals received from the antennas are pre-processed, phase corrected independently and then cross correlated with one another using a centralized correlator to estimate the coherence function. However, a space based array, in addition to several other obstacles, presents new challenges for both communication and processing. In this paper, we discuss various conventional correlator architectures, such as XF, FX and HFX. In addition, the importance of a distributed correlator is emphasized for a space based array, in particular Frequency distributed correlator. We compute transmission, reception and processing requirements for both centralized and distributed architecture. Finally, as a demonstration, we present 2 projects were these signal processing estimates are applied
    corecore