203 research outputs found
Applying phylogenomics to understand the emergence of Shiga Toxin producing Escherichia coli O157:H7 strains causing severe human disease in the United Kingdom
Shiga Toxin producing Escherichia coli (STEC) O157:H7 is a recently emerged zoonotic pathogen with considerable morbidity. Since the serotype emerged in the 1980s, research has focussed on unravelling the evolutionary events from the E. coli O55:H7 ancestor to the contemporaneous globally dispersed strains. In this study the genomes of over 1000 isolates from human clinical cases and cattle, spanning the history of STEC O157:H7 in the United Kingdom were sequenced. Phylogenetic analysis reveals the ancestry, key acquisition events and global context of the strains. Dated phylogenies estimate the time to the most recent common ancestor of the current circulating global clone to 175 years ago, followed by rapid diversification. We show the acquisition of specific virulence determinates occurred relatively recently and coincides with its recent detection in the human population. Using clinical outcome data from 493 cases of STEC O157:H7 we assess the relative risk of severe disease including HUS from each of the defined clades in the population and show the dramatic effect Shiga toxin complement has on virulence. We describe two strain replacement events that have occurred in the cattle population in the UK over the last 30 years; one resulting in a highly virulent strain that has accounted for the majority of clinical cases in the UK over the last decade. This work highlights the need to understand the selection pressures maintaining Shiga-toxin encoding bacteriophages in the ruminant reservoir and the study affirms the requirement for close surveillance of this pathogen in both ruminant and human populations
FIRST-2MASS Red Quasars: Transitional Objects Emerging from the Dust
We present a sample of 120 dust-reddened quasars identified by matching radio
sources detected at 1.4 GHz in the FIRST survey with the near-infrared 2MASS
catalog and color-selecting red sources. Optical and/or near-infrared
spectroscopy provide broad wavelength sampling of their spectral energy
distributions that we use to determine their reddening, characterized by
E(B-V). We demonstrate that the reddening in these quasars is best-described by
SMC-like dust. This sample spans a wide range in redshift and reddening (0.1 <
z < 3, 0.1 < E(B-V) < 1.5), which we use to investigate the possible
correlation of luminosity with reddening. At every redshift, dust-reddened
quasars are intrinsically the most luminous quasars. We interpret this result
in the context of merger-driven quasar/galaxy co-evolution where these reddened
quasars are revealing an emergent phase during which the heavily obscured
quasar is shedding its cocoon of dust prior to becoming a "normal" blue quasar.
When correcting for extinction, we find that, depending on how the parent
population is defined, these red quasars make up < 15-20% of the luminous
quasar population. We estimate, based on the fraction of objects in this phase,
that its duration is 15-20% as long as the unobscured, blue quasar phase.Comment: 21 pages, 17 figures plus a spectral atlas. Accepted for publication
in the Astrophysical Journa
High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data II: The Spring Equatorial Stripe
This is the second paper in a series aimed at finding high-redshift quasars
from five-color (u'g'r'i'z') imaging data taken along the Celestial Equator by
the Sloan Digital Sky Survey (SDSS) during its commissioning phase. In this
paper, we present 22 high-redshift quasars (z>3.6) discovered from ~250 deg^2
of data in the spring Equatorial Stripe, plus photometry for two previously
known high-redshift quasars in the same region of sky. Our success rate of
identifying high-redshift quasars is 68%. Five of the newly discovered quasars
have redshifts higher than 4.6 (z=4.62, 4.69, 4.70, 4.92 and 5.03). All the
quasars have i* < 20.2 with absolute magnitude -28.8 < M_B < -26.1 (h=0.5,
q_0=0.5). Several of the quasars show unusual emission and absorption features
in their spectra, including an object at z=4.62 without detectable emission
lines, and a Broad Absorption Line (BAL) quasar at z=4.92.Comment: 28 pages, AJ in press (Jan 2000), final version with minor changes;
high resolution finding charts available at
http://www.astro.princeton.edu/~fan/paper/qso2.htm
Using imperfect data in predictive mapping of vector : a regional example of Ixodes ricinus distribution
Background:
Knowledge of Ixodes ricinus tick distribution is critical for surveillance and risk management of transmissible tick-borne diseases such as Lyme borreliosis. However, as the ecology of I. ricinus is complex, and robust long-term geographically extensive distribution tick data are limited, mapping often relies on datasets collected for other purposes. We compared the modelled distributions derived from three datasets with information on I. ricinus distribution (quantitative I. ricinus count data from scientific surveys; I. ricinus presence-only data from public submissions; and a combined I. ricinus dataset from multiple sources) to assess which could be reliably used to inform Public Health strategy. The outputs also illustrate the strengths and limitations of these three types of data, which are commonly used in mapping tick distributions.
Methods:
Using the Integrated Nested Laplace algorithm we predicted I. ricinus abundance and presence–absence in Scotland and tested the robustness of the predictions, accounting for errors and uncertainty.
Results:
All models fitted the data well and the covariate predictors for I. ricinus distribution, i.e. deer presence, temperature, habitat, index of vegetation, were as expected. Differences in the spatial trend of I. ricinus distribution were evident between the three predictive maps. Uncertainties in the spatial models resulted from inherent characteristics of the datasets, particularly the number of data points, and coverage over the covariate range used in making the predictions.
Conclusions:
Quantitative I. ricinus data from scientific surveys are usually considered to be gold standard data and we recommend their use where high data coverage can be achieved. However in this study their value was limited by poor data coverage. Combined datasets with I. ricinus distribution data from multiple sources are valuable in addressing issues of low coverage and this dataset produced the most appropriate map for national scale decision-making in Scotland. When mapping vector distributions for public-health decision making, model uncertainties and limitations of extrapolation need to be considered; these are often not included in published vector distribution maps. Further development of tools to better assess uncertainties in the models and predictions are necessary to allow more informed interpretation of distribution maps
Therapeutic hypothermia translates from ancient history in to practice
Acute postasphyxial encephalopathy around the time of birth remains a major cause of death and disability. The possibility that hypothermia may be able to prevent or lessen asphyxial brain injury is a “dream revisited”. In this review, a historical perspective is provided from the first reported use of therapeutic hypothermia for brain injuries in antiquity, to the present day. The first uncontrolled trials of cooling for resuscitation were reported more than 50 y ago. The seminal insight that led to the modern revival of studies of neuroprotection was that after profound asphyxia, many brain cells show initial recovery from the insult during a short “latent” phase, typically lasting ~6 h, only to die hours to days later during a “secondary” deterioration phase characterized by seizures, cytotoxic edema, and progressive failure of cerebral oxidative metabolism. Studies designed around this conceptual framework showed that mild hypothermia initiated as early as possible before the onset of secondary deterioration, and continued for a sufficient duration to allow the secondary deterioration to resolve, is associated with potent, long-lasting neuroprotection. There is now compelling evidence from randomized controlled trials that mild induced hypothermia significantly improves intact survival and neurodevelopmental outcomes to midchildhood
Recommended from our members
Electric lights for increasing egg production
Published April 1928. Facts and recommendations in this publication may no longer be valid. Please look for up-to-date information in the OSU Extension Catalog: http://extension.oregonstate.edu/catalo
Ram pressure feeding super-massive black holes
When supermassive black holes at the center of galaxies accrete matter
(usually gas), they give rise to highly energetic phenomena named Active
Galactic Nuclei (AGN). A number of physical processes have been proposed to
account for the funneling of gas towards the galaxy centers to feed the AGN.
There are also several physical processes that can strip gas from a galaxy, and
one of them is ram pressure stripping in galaxy clusters due to the hot and
dense gas filling the space between galaxies. We report the discovery of a
strong connection between severe ram pressure stripping and the presence of AGN
activity. Searching in galaxy clusters at low redshift, we have selected the
most extreme examples of jellyfish galaxies, which are galaxies with long
tentacles of material extending for dozens of kpc beyond the galaxy disk. Using
the MUSE spectrograph on the ESO Very Large Telescope, we find that 6 out of
the 7 galaxies of this sample host a central AGN, and two of them also have
galactic-scale AGN ionization cones. The high incidence of AGN among the most
striking jellyfishes may be due to ram pressure causing gas to flow towards the
center and triggering the AGN activity, or to an enhancement of the stripping
caused by AGN energy injection, or both. Our analysis of the galaxy position
and velocity relative to the cluster strongly supports the first hypothesis,
and puts forward ram pressure as another, yet unforeseen, possible mechanism
for feeding the central supermassive black hole with gas.Comment: published in Nature, Vol.548, Number 7667, pag.30
Satellite content and quenching of star formation in galaxy groups at z ~ 1.8
We study the properties of satellites in the environment of massive star-forming galaxies at z ~ 1.8 in the COSMOS field, using a sample of 215 galaxies on the main sequence of star formation with an average mass of ~1011M⊙. At z> 1.5, these galaxies typically trace halos of mass ≳1013M⊙. We use optical-near-infrared photometry to estimate stellar masses and star formation rates (SFR) of centrals and satellites down to ~ 6 × 109M⊙. We stack data around 215 central galaxies to statistically detect their satellite halos, finding an average of ~3 galaxies in excess of the background density. We fit the radial profiles of satellites with simple β-models, and compare their integrated properties to model predictions. We find that the total stellar mass of satellites amounts to ~68% of the central galaxy, while spectral energy distribution modeling and far-infrared photometry consistently show their total SFR to be 25-35% of the central's rate. We also see significant variation in the specific SFR of satellites within the halo with, in particular, a sharp decrease at <100 kpc. After considering different potential explanations, we conclude that this is likely an environmental signature of the hot inner halo. This effect can be explained in the first order by a simple free-fall scenario, suggesting that these low-mass environments can shut down star formation in satellites on relatively short timescales of ~0.3 Gyr
The Seventh Data Release of the Sloan Digital Sky Survey
This paper describes the Seventh Data Release of the Sloan Digital Sky Survey
(SDSS), marking the completion of the original goals of the SDSS and the end of
the phase known as SDSS-II. It includes 11663 deg^2 of imaging data, with most
of the roughly 2000 deg^2 increment over the previous data release lying in
regions of low Galactic latitude. The catalog contains five-band photometry for
357 million distinct objects. The survey also includes repeat photometry over
250 deg^2 along the Celestial Equator in the Southern Galactic Cap. A
coaddition of these data goes roughly two magnitudes fainter than the main
survey. The spectroscopy is now complete over a contiguous area of 7500 deg^2
in the Northern Galactic Cap, closing the gap that was present in previous data
releases. There are over 1.6 million spectra in total, including 930,000
galaxies, 120,000 quasars, and 460,000 stars. The data release includes
improved stellar photometry at low Galactic latitude. The astrometry has all
been recalibrated with the second version of the USNO CCD Astrograph Catalog
(UCAC-2), reducing the rms statistical errors at the bright end to 45
milli-arcseconds per coordinate. A systematic error in bright galaxy photometr
is less severe than previously reported for the majority of galaxies. Finally,
we describe a series of improvements to the spectroscopic reductions, including
better flat-fielding and improved wavelength calibration at the blue end,
better processing of objects with extremely strong narrow emission lines, and
an improved determination of stellar metallicities. (Abridged)Comment: 20 pages, 10 embedded figures. Accepted to ApJS after minor
correction
Sloan Digital Sky Survey Imaging of Low Galactic Latitude Fields: Technical Summary and Data Release
The Sloan Digital Sky Survey (SDSS) mosaic camera and telescope have obtained
five-band optical-wavelength imaging near the Galactic plane outside of the
nominal survey boundaries. These additional data were obtained during
commissioning and subsequent testing of the SDSS observing system, and they
provide unique wide-area imaging data in regions of high obscuration and star
formation, including numerous young stellar objects, Herbig-Haro objects and
young star clusters. Because these data are outside the Survey regions in the
Galactic caps, they are not part of the standard SDSS data releases. This paper
presents imaging data for 832 square degrees of sky (including repeats), in the
star-forming regions of Orion, Taurus, and Cygnus. About 470 square degrees are
now released to the public, with the remainder to follow at the time of SDSS
Data Release 4. The public data in Orion include the star-forming region NGC
2068/NGC 2071/HH24 and a large part of Barnard's loop.Comment: 31 pages, 9 figures (3 missing to save space), accepted by AJ, in
press, see http://photo.astro.princeton.edu/oriondatarelease for data and
paper with all figure
- …