7 research outputs found

    Characterization of compound 584, an Abl kinase inhibitor with lasting effects

    Get PDF
    Background: Resistance to imatinib is an important clinical issue in the treatment of Philadelphia chromosomepositive leukemias which is being tackled by the development of new, more potent drugs, such as the dual Src/Abl tyrosine kinase inhibitors dasatinib and bosutinib and the imatinib analog nilotinib. In the current study we describe the design, synthesis and biological properties of an imatinib analog with a chlorine-substituted benzamide, namely compound 584 (cmp-584). Design and Methods: To increase the potency, we rationally designed cmp-584, a compound with enhanced shape complementarity with the kinase domain of Abl. cmp-584 was synthesized and characterized in vitro against a panel of 67 serine/threonine and tyrosine kinases using radioactive and enzyme-linked immunosorbent kinase assays. We studied inhibitory cellular activity using Bcr/Abl-positive human cell lines, murine transfectants in proliferation experiments, and a murine xenotransplanted model. Kinase assays on isolated Bcr/Abl protein were also performed. Finally, we used a wash-out approach on whole cells to study the binding kinetics of the inhibitor. Results: cmp-584 showed potent anti-Abl activity both on recombinant protein (IC50: 8 nM) and in cell-based assays (IC50: 0.1-10 nM). The drug maintained inhibitory activity against platelet-derived growth factor receptors and c-KIT and was also active against Lyn (IC50: 301 nM). No other kinase of the panel was inhibited at nanomolar doses. cmp-584 was 20- to 300-fold more active than imatinib in cells. This superior activity was evident in intact cells, in which full-length Bcr-Abl is present. In vivo experiments confirmed the activity of cmp-584. Wash-out experiments showed that short exposure to the drug impaired cell proliferation and Bcr-Abl phosphorylation for a substantially longer period of time than imatinib. Conclusions: The present results suggest a slower off-rate (dissociation rate) of cmp-584 compared to imatinib as an explanation for the increased cellular activity of the former. ©2008 Ferrata Storti Foundation

    Structural Insights into the ATP Binding Pocket of the Anaplastic Lymphoma Kinase by Site-Directed Mutagenesis, Inhibitor Binding Analysis, and Homology Modeling

    No full text
    Anaplastic lymphoma kinase (ALK) is a valid target for anticancer therapy; however, potent ALK inhibitors suitable for clinical use are lacking. Because the majority of described kinase inhibitors bind in the ATP pocket of the kinase domain, we have characterized this pocket in ALK using site-directed mutagenesis, inhibition studies, and molecular modeling. Mutation of the gatekeeper residue, a key structural determinant influencing inhibitor binding, rendered the fusion protein, NPM/ALK, sensitive to inhibition by SKI-606 in the nanomolar range, while PD173955 inhibited the NPM/ALK mutant at micromolar concentrations. In contrast, both wild type and mutant NPM/ALK were insensitive to imatinib. Computer modeling indicated that docking solutions obtained with a homology model representing the intermediate conformation of the ALK kinase domain reflected closely experimental data. The good agreement between experimental and virtual results indicate that the ALK molecular models described here are useful tools for the rational design of ALK selective inhibitors. In addition, 4-phenylamino-quinoline compounds may have potential as templates for ALK inhibitors

    Unique substrate specificity of anaplastic lymphoma kinase (ALK): development of phosphoacceptor peptides for the assay of ALK activity

    No full text
    The anaplastic lymphoma kinase (ALK), whose constitutively active fusion proteins are responsible for 5-10% of non-Hodgkin's lymphomas, shares with the other members of the insulin receptor kinase (IRK) subfamily an activation loop (A-loop) with the triple tyrosine motif Y-x-x-x-Y-Y. However, the amino acid sequence of the ALK A-loop differs significantly from the sequences of both the IRK A-loop and the consensus A-loop for this kinase subfamily. A major difference is the presence of a unique "RAS" triplet between the first and second tyrosines of the ALK A-loop, which in IRK is replaced by "ETD". Here we show that a peptide reproducing the A-loop of ALK is readily phosphorylated by ALK, while a homologous IRK A-loop peptide is not unless its "ETD" triplet is substituted by "RAS". Phosphorylation occurs almost exclusively at the first tyrosine of the Y-x-x-x-Y-Y motif, as judged by Edman analysis of the phosphoradiolabeled product. Consequently, a peptide in which the first tyrosine had been replaced by phenylalanine (FYY) was almost unaffected by ALK. In contrast, a peptide in which the second and third tyrosines had been replaced by phenylalanine (YFF) was phosphorylated more rapidly than the parent peptide (YYY). A number of substitutions in the YFF peptide outlined the importance of Ile and Arg at positions n - 1 and n + 6 in addition to the central triplet, to ensure efficient phosphorylation by ALK. Such a peculiar substrate specificity allows the specific monitoring of ALK activity in crude extracts of NPM-ALK positive cells, using the YFF peptide, which is only marginally phosphorylated by a number of other tyrosine kinases

    NPM/ALK binds and phosphorylates the RNA/DNA-binding protein PSF in anaplastic large-cell lymphoma

    No full text
    The oncogenic fusion tyrosine kinase nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) induces cellular transformation in anaplastic large-cell lymphomas (ALCLs) carrying the t(2;5) chromosomal translocation. Protein-protein interactions involving NPM/ALK are important for the activation of downstream signaling pathways. This study was aimed at identifying novel NPM/ALK-binding proteins that might contribute to its oncogenic transformation. Using a proteomic approach, several RNA/DNA-binding proteins were found to coimmunoprecipitate with NPM/ALK, including the multifunctional polypyrimidine tract binding proteinassociated splicing factor (PSF). The interaction between NPM/ALK and PSF was dependent on an active ALK kinase domain and PSF was found to be tyrosine-phosphorylated in NPM/ALK-expressing cell lines and in primary ALK+ ALCL samples. Furthermore, PSF was shown to be a direct substrate of purified ALK kinase domain in vitro, and PSF Tyr293 was identified as the site of phosphorylation. Y293F PSF was not phosphorylated by NPM/ALK and was not delocalized in NPM/ALK+ cells. The expression of ALK fusion proteins induced delocalization of PSF from the nucleus to the cytoplasm and forced overexpression of PSF-inhibited proliferation and induced apoptosis in cells expressing NPM/ALK. PSF phosphorylation also increased its binding to RNA and decreased the PSF-mediated suppression of GAGE6 expression. These results identify PSF as a novel NPM/ALK-binding protein and substrate, and suggest that PSF function may be perturbed in NPM/ALK-transformed cells
    corecore