127 research outputs found

    Habitat‐dependent occupancy and movement in a migrant songbird highlights the importance of mangroves and forested lagoons in Panama and Colombia

    Get PDF
    Climate change is predicted to impact tropical mangrove forests due to decreased rainfall, sea‐level rise, and increased seasonality of flooding. Such changes are likely to influence habitat quality for migratory songbirds occupying mangrove wetlands during the tropical dry season. Overwintering habitat quality is known to be associated with fitness in migratory songbirds, yet studies have focused primarily on territorial species. Little is known about the ecology of nonterritorial species that may display more complex movement patterns within and among habitats of differing quality. In this study, we assess within‐season survival and movement at two spatio‐temporal scales of a nonterritorial overwintering bird, the prothonotary warbler (Protonotaria citrea), that depends on mangroves and tropical lowland forests. Specifically, we (a) estimated within‐patch survival and persistence over a six‐week period using radio‐tagged birds in central Panama and (b) modeled abundance and occupancy dynamics at survey points throughout eastern Panama and northern Colombia as the dry season progressed. We found that site persistence was highest in mangroves; however, the probability of survival did not differ among habitats. The probability of warbler occupancy increased with canopy cover, and wet habitats were least likely to experience local extinction as the dry season progressed. We also found that warbler abundance is highest in forests with the tallest canopies. This study is one of the first to demonstrate habitat‐dependent occupancy and movement in a nonterritorial overwintering migrant songbird, and our findings highlight the need to conserve intact, mature mangrove, and lowland forests

    Land use conversion from peat swamp forest to oil palm agriculture greatly modifies microclimate and soil conditions

    Get PDF
    Oil palm (Elaeis guineensis) agriculture is rapidly expanding and requires large areas of land in the tropics to meet the global demand for palm oil products. Land cover conversion of peat swamp forest to oil palm (large- and small-scale oil palm production) is likely to have negative impacts on microhabitat conditions. This study assessed the impact of peat swamp forest conversion to oil palm plantation on microclimate conditions and soil characteristics. The measurement of microclimate (air temperature, wind speed, light intensity and relative humidity) and soil characteristics (soil surface temperature, soil pH, soil moisture, and ground cover vegetation temperature) were compared at a peat swamp forest, smallholdings and a large-scale plantation. Results showed that the peat swamp forest was 1.5–2.3 °C cooler with significantly greater relative humidity, lower light intensities and wind speed compared to the smallholdings and large-scale plantations. Soil characteristics were also significantly different between the peat swamp forest and both types of oil palm plantations with lower soil pH, soil and ground cover vegetation surface temperatures and greater soil moisture in the peat swamp forest. These results suggest that peat swamp forests have greater ecosystem benefits compared to oil palm plantations with smallholdings agricultural approach as a promising management practice to improve microhabitat conditions. Our findings also justify the conservation of remaining peat swamp forest as it provides a refuge from harsh microclimatic conditions that characterize large plantations and smallholdings

    Nutrient Processes at the Stream-Lake Interface for a Channelized Versus Unmodified Stream Mouth

    Get PDF
    Inorganic forms of nitrogen and phosphorous impact freshwater lakes by stimulating primary production and affecting water quality and ecosystem health. Communities around the world are motivated to sustain and restore freshwater resources and are interested in processes controlling nutrient inputs. We studied the environment where streams flow into lakes, referred to as the stream-lake interface (SLI), for a channelized and unmodified stream outlet. Channelization is done to protect infrastructure or recreational beach areas. We collected hydraulic and nutrient data for surface water and shallow groundwater in two SLIs to develop conceptual models that describe characteristics that are representative of these hydrologic features. Water, heat, and solute transport models were used to evaluate hydrologic conceptualizations and estimate mean residence times of water in the sediment. A nutrient mass balance model is developed to estimate net rates of adsorption and desorption, mineralization, and nitrification along subsurface flow paths. Results indicate that SLIs are dynamic sources of nutrients to lakes and that the common practice of channelizing the stream at the SLI decreases nutrient concentrations in pore water discharging along the lakeshore. This is in contrast to the unmodified SLI that forms a barrier beach that disconnects the stream from the lake and results in higher nutrient concentrations in pore water discharging to the lake. These results are significant because nutrient delivery through pore water seepage at the lakebed from the natural SLI contributes to nearshore algal communities and produces elevated concentrations of inorganic nutrients in the benthic zone where attached algae grow

    Phytoremediation using Aquatic Plants

    Get PDF

    Detecting Trends in Wetland Extent from MODIS Derived Soil Moisture Estimates

    No full text
    A soil wetness index for optical satellite images, the Transformed Wetness Index (TWI) is defined and evaluated against ground sampled soil moisture. Conceptually, TWI is formulated as a non-linear normalized difference index from orthogonalized vectors representing soil and water conditions, with the vegetation signal removed. Compared to 745 ground sites with in situ measured soil moisture, TWI has a globally estimated Random Mean Square Error of 14.0 (v/v expressed as percentage), which reduces to 8.5 for unbiased data. The temporal variation in soil moisture is significantly captured at 4 out of 10 stations, but also fails for 2 to 3 out of 10 stations. TWI is biased by different soil mineral compositions, dense vegetation and shadows, with the latter two most likely also causing the failure of TWI to capture soil moisture dynamics. Compared to soil moisture products from microwave brightness temperature data, TWI performs slightly worse, but has the advantages of not requiring ancillary data, higher spatial resolution and a relatively simple application. TWI has been used for wetland and peatland mapping in previously published studies but is presented in detail in this article, and then applied for detecting changes in soil moisture for selected tropical regions between 2001 and 2016. Sites with significant changes are compared to a published map of global tropical wetlands and peatlands

    Nutrient removal processes in freshwater submersed macrophyte systems

    No full text
    A recent development for the control of eutrophication is the application of ecological engineering, involving designed wetlands for water treatment. The most undeveloped concept for designed wetlands is the use of submersed macrophytes. Apart from nutrient uptake, the macrophytes play a crucial role by creating a favourable environment for a variety of complex chemical, biological and physical processes that contribute to the removal and degradation of nutrients. In unharvested systems nitrogen is mainly removed by denitrification. If the system is harvested, nutrient assimilation is approximately of the same magnitude. Also, sedimentation of nitrogen is important, especially during colder periods when biological activity decreases. The removal of phosphorus is more dependent on biomass uptake and subsequent harvesting. Immobilisation by sorption and precipitation processes are also important removal mechanisms, especially in unharvested systems. The efficiency of the removal processes is largely determined by the Chemical and physical composition of the media. Much efficiency can be gained by tuning the composition and management of the plant according to the kind of water that is treated, thus creating favourable conditions for the different kind of removal processes

    Mapping global tropical wetlands from earth observing satellite imagery

    No full text
    corecore