69 research outputs found

    Transcriptome profiling of grapevine seedless segregants during berry development reveals candidate genes associated with berry weight

    Get PDF
    Indexación: Web of Science; PubMedBackground Berry size is considered as one of the main selection criteria in table grape breeding programs. However, this is a quantitative and polygenic trait, and its genetic determination is still poorly understood. Considering its economic importance, it is relevant to determine its genetic architecture and elucidate the mechanisms involved in its expression. To approach this issue, an RNA-Seq experiment based on Illumina platform was performed (14 libraries), including seedless segregants with contrasting phenotypes for berry weight at fruit setting (FST) and 6–8 mm berries (B68) phenological stages. Results A group of 526 differentially expressed (DE) genes were identified, by comparing seedless segregants with contrasting phenotypes for berry weight: 101 genes from the FST stage and 463 from the B68 stage. Also, we integrated differential expression, principal components analysis (PCA), correlations and network co-expression analyses to characterize the transcriptome profiling observed in segregants with contrasting phenotypes for berry weight. After this, 68 DE genes were selected as candidate genes, and seven candidate genes were validated by real time-PCR, confirming their expression profiles. Conclusions We have carried out the first transcriptome analysis focused on table grape seedless segregants with contrasting phenotypes for berry weight. Our findings contributed to the understanding of the mechanisms involved in berry weight determination. Also, this comparative transcriptome profiling revealed candidate genes for berry weight which could be evaluated as selection tools in table grape breeding programs.http://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-016-0789-

    The sulfur pathway and diagnosis of sulfate depletion in grapevine

    Get PDF
    Sulfur is an essential nutrient to all plant species. Plants assimilate sulfur in a well-described pathway, which has been taken up by roots. Regulatory mech- anism has been the subject of many research papers. However, recent studies highlighted differences between crop plants and the model plant Arabidopsis thaliana. Our work focuses on the identification of genes involved in the sulfur metabolism in the Vitis vinifera genome, and their response to sulfur deficiency and other abiotic stress endured by grapevine in the field, namely water stress. Here, we describe the identification and brief characterization of the first assimilation enzymes involved in the sulfur pathway, the enzyme responsible for sulfur activa- tion, ATP sulfurylase (ATPS), and the two enzymes that reduce sulfate to sulfide, Adenosine 50-phosphosulate reductase (APR) and Sulfite reductase (SiR). A reduc- tion was observed in the number of ATPS and APR isoforms identified in V. vinifera genome when compared to A. thaliana or Glycine max genomes. Two ATPS isoforms were present in the Vitis genome, of which only ATPS1 transcript was detected in the tested tissues, and one APR isoform, suggesting an absence of redundancy in the role of both enzymes. ATPS1, APR and SiR transcript level was up-regulated in response to 2 days exposure to sulfur deficiency in V. vinifera cell cultures, which was completely reversed by the addition of GSH to the culture medium. Apparently, oxidative stress triggered GSH has a pivotal role in the regulation of ATPS1, APR and SiR transcription level, since their up-regulation was observed in mRNA from field grapevine berries under water stress, which is known to induce oxidative stress.info:eu-repo/semantics/publishedVersio

    High prevalence of PRPH2 in autosomal dominant retinitis pigmentosa in france and characterization of biochemical and clinical features.

    Get PDF
    PURPOSE: To assess the prevalence of PRPH2 in autosomal dominant retinitis pigmentosa (adRP), to report 6 novel mutations, to characterize the biochemical features of a recurrent novel mutation, and to study the clinical features of adRP patients. DESIGN: Retrospective clinical and molecular genetic study. METHODS: Clinical investigations included visual field testing, fundus examination, high-resolution spectral-domain optical coherence tomography (OCT), fundus autofluorescence imaging, and electroretinogram (ERG) recording. PRPH2 was screened by Sanger sequencing in a cohort of 310 French families with adRP. Peripherin-2 protein was produced in yeast and analyzed by Western blot. RESULTS: We identified 15 mutations, including 6 novel and 9 previously reported changes in 32 families, accounting for a prevalence of 10.3% in this adRP population. We showed that a new recurrent p.Leu254Gln mutation leads to protein aggregation, suggesting abnormal folding. The clinical severity of the disease in examined patients was moderate with 78% of the eyes having 1-0.5 of visual acuity and 52% of the eyes retaining more than 50% of the visual field. Some patients characteristically showed vitelliform deposits or macular involvement. In some families, pericentral RP or macular dystrophy were found in family members while widespread RP was present in other members of the same families. CONCLUSIONS: The mutations in PRPH2 account for 10.3% of adRP in the French population, which is higher than previously reported (0%-8%) This makes PRPH2 the second most frequent adRP gene after RHO in our series. PRPH2 mutations cause highly variable phenotypes and moderate forms of adRP, including mild cases, which could be underdiagnosed

    PtrWRKY19, a novel WRKY transcription factor, contributes to the regulation of pith secondary wall formation in Populus trichocarpa

    Get PDF
    WRKY proteins are one of the largest transcription factor families in higher plants and play diverse roles in various biological processes. Previous studies have shown that some WRKY members act as negative regulators of secondary cell wall formation in pith parenchyma cells. However, the regulatory mechanism of pith secondary wall formation in tree species remains largely unknown. In this study, PtrWRKY19 encoding a homolog of Arabidopsis WRKY12 was isolated from Populus trichocarpa. PtrWRKY19 was expressed in all tissues tested, with highest expression in stems, especially in pith. PtrWRKY19 was located in the nucleus and functioned as a transcriptional repressor. Ectopic expression of PtrWRKY19 in an atwrky12 mutant successfully rescued the phenotype in pith cell walls caused by the defect of AtWRKY12, suggesting that PtrWRKY19 had conserved functions for homologous AtWRKY12. Overexpression of PtrWRKY19 in poplar plants led to a significant increase in the number of pith parenchyma cells. qRT-PCR analysis showed that lignin biosynthesis-related genes were repressed in transgenic plants. In transcient reporter assays, PtrWRKY19 was identified to repress transcription from the PtoC4H2 promoter containing the conserved W-box elements. These results indicated that PtrWRKY19 may function as a negative regulator of pith secondary wall formation in poplar

    Zea mays iRS1563: A Comprehensive Genome-Scale Metabolic Reconstruction of Maize Metabolism

    Get PDF
    The scope and breadth of genome-scale metabolic reconstructions have continued to expand over the last decade. Herein, we introduce a genome-scale model for a plant with direct applications to food and bioenergy production (i.e., maize). Maize annotation is still underway, which introduces significant challenges in the association of metabolic functions to genes. The developed model is designed to meet rigorous standards on gene-protein-reaction (GPR) associations, elementally and charged balanced reactions and a biomass reaction abstracting the relative contribution of all biomass constituents. The metabolic network contains 1,563 genes and 1,825 metabolites involved in 1,985 reactions from primary and secondary maize metabolism. For approximately 42% of the reactions direct literature evidence for the participation of the reaction in maize was found. As many as 445 reactions and 369 metabolites are unique to the maize model compared to the AraGEM model for A. thaliana. 674 metabolites and 893 reactions are present in Zea mays iRS1563 that are not accounted for in maize C4GEM. All reactions are elementally and charged balanced and localized into six different compartments (i.e., cytoplasm, mitochondrion, plastid, peroxisome, vacuole and extracellular). GPR associations are also established based on the functional annotation information and homology prediction accounting for monofunctional, multifunctional and multimeric proteins, isozymes and protein complexes. We describe results from performing flux balance analysis under different physiological conditions, (i.e., photosynthesis, photorespiration and respiration) of a C4 plant and also explore model predictions against experimental observations for two naturally occurring mutants (i.e., bm1 and bm3). The developed model corresponds to the largest and more complete to-date effort at cataloguing metabolism for a plant species

    A Systematic Review and Meta-analysis of the Impact of Mindfulness-Based Interventions on the Well-Being of Healthcare Professionals

    Get PDF
    Efforts to improve the wellbeing of healthcare professionals include mindfulness-based interventions (MBIs). To understand the value of such initiatives, we conducted a systematic review and meta-analysis of empirical studies pertaining to the use of MBIs with healthcare professionals. Databases were reviewed from the start of records to January 2016 (PROSPERO registration number: CRD42016032899). Eligibility criteria included empirical analyses of wellbeing outcomes acquired in relation to MBIs. Forty-two papers met the eligibility criteria, consisting of a total of 2,101 participants. Studies were examined for two broad classes of wellbeing outcomes: (a) “negative” mental health measures such as anxiety, depression, and stress; (b) “positive” indices of wellbeing, such as life satisfaction, together with outcomes associated with wellbeing, such as emotional intelligence. MBIs were generally associated with positive outcomes in relation to most measures, and mindfulness does appear to improve the wellbeing of healthcare professionals. However, the quality of the studies was inconsistent, so further research is needed, particularly high-quality randomised control trials

    Berry Flesh and Skin Ripening Features in Vitis vinifera as Assessed by Transcriptional Profiling

    Get PDF
    Background Ripening of fleshy fruit is a complex developmental process involving the differentiation of tissues with separate functions. During grapevine berry ripening important processes contributing to table and wine grape quality take place, some of them flesh- or skin-specific. In this study, transcriptional profiles throughout flesh and skin ripening were followed during two different seasons in a table grape cultivar ‘Muscat Hamburg’ to determine tissue-specific as well as common developmental programs. Methodology/Principal Findings Using an updated GrapeGen Affymetrix GeneChip® annotation based on grapevine 12×v1 gene predictions, 2188 differentially accumulated transcripts between flesh and skin and 2839 transcripts differentially accumulated throughout ripening in the same manner in both tissues were identified. Transcriptional profiles were dominated by changes at the beginning of veraison which affect both pericarp tissues, although frequently delayed or with lower intensity in the skin than in the flesh. Functional enrichment analysis identified the decay on biosynthetic processes, photosynthesis and transport as a major part of the program delayed in the skin. In addition, a higher number of functional categories, including several related to macromolecule transport and phenylpropanoid and lipid biosynthesis, were over-represented in transcripts accumulated to higher levels in the skin. Functional enrichment also indicated auxin, gibberellins and bHLH transcription factors to take part in the regulation of pre-veraison processes in the pericarp, whereas WRKY and C2H2 family transcription factors seems to more specifically participate in the regulation of skin and flesh ripening, respectively. Conclusions/Significance A transcriptomic analysis indicates that a large part of the ripening program is shared by both pericarp tissues despite some components are delayed in the skin. In addition, important tissue differences are present from early stages prior to the ripening onset including tissue-specific regulators. Altogether, these findings provide key elements to understand berry ripening and its differential regulation in flesh and skin.This study was financially supported by GrapeGen Project funded by Genoma España within a collaborative agreement with Genome Canada. The authors also thank The Ministerio de Ciencia e Innovacion for project BIO2008-03892 and a bilateral collaborative grant with Argentina (AR2009-0021). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe

    Transcriptomic analysis of the late stages of grapevine (Vitis vinifera cv. Cabernet Sauvignon) berry ripening reveals significant induction of ethylene signaling and flavor pathways in the skin

    Get PDF
    Background: Grapevine berry, a nonclimacteric fruit, has three developmental stages; the last one is when berrycolor and sugar increase. Flavors derived from terpenoid and fatty acid metabolism develop at the very end of thisripening stage. The transcriptomic response of pulp and skin of Cabernet Sauvignon berries in the late stages ofripening between 22 and 37 \ub0Brix was assessed using whole-genome micorarrays.Results: The transcript abundance of approximately 18,000 genes changed with \ub0Brix and tissue type. There were alarge number of changes in many gene ontology (GO) categories involving metabolism, signaling and abioticstress. GO categories reflecting tissue differences were overrepresented in photosynthesis, isoprenoid metabolismand pigment biosynthesis. Detailed analysis of the interaction of the skin and pulp with \ub0Brix revealed that therewere statistically significantly higher abundances of transcripts changing with \ub0Brix in the skin that were involved inethylene signaling, isoprenoid and fatty acid metabolism. Many transcripts were peaking around known optimalfruit stages for flavor production. The transcript abundance of approximately two-thirds of the AP2/ERF superfamilyof transcription factors changed during these developmental stages. The transcript abundance of a unique clade ofERF6-type transcription factors had the largest changes in the skin and clustered with genes involved in ethylene,senescence, and fruit flavor production including ACC oxidase, terpene synthases, and lipoxygenases. The transcriptabundance of important transcription factors involved in fruit ripening was also higher in the skin.Conclusions: A detailed analysis of the transcriptome dynamics during late stages of ripening of grapevine berriesrevealed that these berries went through massive transcriptional changes in gene ontology categories involvingchemical signaling and metabolism in both the pulp and skin, particularly in the skin. Changes in the transcriptabundance of genes involved in the ethylene signaling pathway of this nonclimacteric fruit were statisticallysignificant in the late stages of ripening when the production of transcripts for important flavor and aroma compoundswere at their highest. Ethylene transcription factors known to play a role in leaf senescence also appear to play a role infruit senescence. Ethylene may play a bigger role than previously thought in this non-climacteric fruit
    corecore