9 research outputs found

    Tropospheric and stratospheric smoke over Europe as observed within EARLINET/ACTRIS in summer 2017

    Get PDF
    For several weeks in summer 2017, strong smoke layers were observed over Europe at numerous EARLINET stations. EARLINET is the European research lidar network and part of ACTRIS and comprises more than 30 ground-based lidars. The smoke layers were observed in the troposphere as well as in the stratosphere up to 25 km from Northern Scandinavia over whole western and central Europe to the Mediterranean regions. Backward trajectory analysis among other tools revealed that these smoke layers originated from strong wild fires in western Canada in combination with pyrocumulus convection. An extraordinary fire event in the mid of August caused intense smoke layers that were observed across Europe for several weeks starting on 18 August 2017. Maximum aerosol optical depths up to 1.0 at 532 nm were observed at Leipzig, Germany, on 22 August 2017 during the peak of this event. The stratospheric smoke layers reached extinction coefficient values of more than 600 Mm−1 at 532 nm, a factor of 10 higher than observed for volcanic ash after the Pinatubo eruption in the 1990s. First analyses of the intensive optical properties revealed low particle depolarization values at 532 nm for the tropospheric smoke (spherical particles) and rather high values (up to 20%) in the stratosphere. However, a strong wavelength dependence of the depolarization ratio was measured for the stratospheric smoke. This indicates irregularly shaped stratospheric smoke particles in the size range of the accumulation mode. This unique depolarization feature makes it possible to distinguish clearly smoke aerosol from cirrus clouds or other aerosol types by polarization lidar measurements. Particle extinction-to-backscatter ratios were rather low in the order of 40 to 50 sr at 355 nm, while values between 70-90 sr were measured at higher wavelengths. In the western and central Mediterranean, stratospheric smoke layers were most prominent in the end of August at heights between 16 and 20 km. In contrast, stratospheric smoke started to occur in the eastern Mediterranean (Cyprus and Israel) in the beginning of September between 18 and 23 km. Stratospheric smoke was still visible in the beginning of October at certain locations (e.g. Evora, Portugal), while tropospheric smoke was mainly observed until the end of August within Europe. An overview of the smoke layers measured at several EARLINET sites will be given. The temporal development of these layers as well as their geometrical and optical properties will be presented

    Assimilation of lidar signals: application to aerosol forecasting in the western Mediterranean basin

    Get PDF
    International audienceThis paper presents a new application of assim-ilating lidar signals to aerosol forecasting. It aims at in-vestigating the impact of a ground-based lidar network on the analysis and short-term forecasts of aerosols through a case study in the Mediterranean basin. To do so, we em-ploy a data assimilation (DA) algorithm based on the opti-mal interpolation method developed in the POLAIR3D chem-istry transport model (CTM) of the POLYPHEMUS air qual-ity modelling platform. We assimilate hourly averaged nor-malised range-corrected lidar signals (PR 2) retrieved from a 72 h period of intensive and continuous measurements performed in July 2012 by ground-based lidar systems of the European Aerosol Research Lidar Network (EAR-LINET) integrated into the Aerosols, Clouds, and Trace Published by Copernicus Publications on behalf of the European Geosciences Union. 12032 Y. Wang et al.: Assimilation of lidar signals gases Research InfraStructure (ACTRIS) network and an ad-ditional system in Corsica deployed in the framework of the pre-ChArMEx (Chemistry-Aerosol Mediterranean Ex-periment)/TRAQA (TRAnsport Ă  longue distance et QualitĂ© de l'Air) campaign. This lidar campaign was dedicated to demonstrating the potential operationality of a research net-work like EARLINET and the potential usefulness of assim-ilation of lidar signals to aerosol forecasts. Particles with an aerodynamic diameter lower than 2.5 ”m (PM 2.5) and those with an aerodynamic diameter higher than 2.5 ”m but lower than 10 ”m (PM 10−2.5) are analysed separately using the li-dar observations at each DA step. First, we study the spatial and temporal influences of the assimilation of lidar signals on aerosol forecasting. We conduct sensitivity studies on al-gorithmic parameters, e.g. the horizontal correlation length (L h) used in the background error covariance matrix (50 km, 100 km or 200 km), the altitudes at which DA is performed (0.75–3.5 km, 1.0–3.5 km or 1.5–3.5 km a.g.l.) and the assim-ilation period length (12 h or 24 h). We find that DA with L h = 100 km and assimilation from 1.0 to 3.5 km a.g.l. dur-ing a 12 h assimilation period length leads to the best scores for PM 10 and PM 2.5 during the forecast period with refer-ence to available measurements from surface networks. Sec-ondly, the aerosol simulation results without and with lidar DA using the optimal parameters (L h = 100 km, an assim-ilation altitude range from 1.0 to 3.5 km a.g.l. and a 12 h DA period) are evaluated using the level 2.0 (cloud-screened and quality-assured) aerosol optical depth (AOD) data from AERONET, and mass concentration measurements (PM 10 or PM 2.5) from the French air quality (BDQA) network and the EMEP-Spain/Portugal network. The results show that the simulation with DA leads to better scores than the one with-out DA for PM 2.5 , PM 10 and AOD. Additionally, the com-parison of model results to evaluation data indicates that the temporal impact of assimilating lidar signals is longer than 36 h after the assimilation period

    EARLINET correlative measurements for CALIPSO

    No full text
    The European Aerosol Research Lidar Network (EARLINET) was established in 2000 to derive a comprehensive, quantitative, and statistically significant data base for the aerosol distribution on the European scale. At present, EARLINET consists of 25 stations: 16 Raman lidar stations, including 8 multi-wavelength Raman lidar stations which are used to retrieve aerosol microphysical properties. EARLINET. performs a rigorous quality assurance program for instruments and evaluation algorithms. All stations measure simultaneously on a predefined schedule at three dates per week to obtain unbiased data for climatological studies. Since June 2006 the first backscatter lidar is operational aboard the CALIPSO satellite. EARLINET represents an excellent tool to validate CALIPSO lidar data on a continental scale. Aerosol extinction and lidar ratio measurements provided by the network will be particularly important for that validation. The measurement strategy of EARLINET is as follows: Measurements are performed at all stations within 80 km from the overpasses and additionally at the lidar station which is closest to the actually overpassed site. If a multi-wavelength Raman lidar station is overpassed then also the next closest 3+2 station performs a measurement. Altogether we performed more than 1000 correlative observations for CALIPSO between June 2006 and June 2007. Direct intercomparisons between CALIPSO profiles and attenuated backscatter profiles obtained by EARLINET lidars look very promising. Two measurement examples are used to discuss the potential of multi-wavelength Raman lidar observations for the validation and optimization of the CALIOP Scene Classification Algorithm. Correlative observations with multi-wavelength Raman lidars provide also the data base for a harmonization of the CALIPSO aerosol data and the data collected in future ESA lidar-in-space missions

    EARLINET observations related to Saharan Dust events (2000-2010)

    No full text

    EARLINET correlative observations for CALIPSO (2006-2010)

    No full text
    A European Aerosol Research Lidar Network to Establish an Aerosol ClimatologyAerosols affect life on earth in several ways. They play an important role in the climate system; the effect of aerosols on the global climate system is one of the major uncertainties of present climate predictions. They play a major role in atmospheric chemistry and hence affect the concentrations of other potentially harmful atmospheric constituents, e.g. ozone. They are an important controlling factor for the radiation budget, in particular in the UV-B part of the spectrum. At ground level, they can be harmful, even toxic, to man, animals, and plants. Because of these adverse effects that aerosols can have on human life, it is necessary to achieve an advanced understanding of the processes that generate, redistribute, and remove aerosols in the atmosphere.A quantitative dataset describing the aerosol vertical, horizontal, and temporal distribution, including its variability on a continental scale, is necessary. The dataset is used to validate and improve models that predict the future state of the atmosphere and its dependence on different scenarios describing economic development, including those actions taken to preserve the quality of the environment. The EARLINET data set is the most comprehensive compilation of data available for this purpose.This project description is taken from: http://www.earlinet.org/index.php?id=earlinet_homepageSummary: Since the beginning of CALIPSO observations in June 2006 EARLINET has performed correlative measurements during nearby overpasses of the satellite at individual stations following a dedicated observational strategy. The EARLINET-CALIPSO correlative measurement plan considers the criteria established in the CALIPSO validation plan (http://calipsovalidation.hamptonu.edu). Participating EARLINET stations perform measurements, as close in time as possible and for a period of at least 30 min up to several hours, when CALIPSO overpasses their location within a horizontal radius of 100 km. Within the 16-day observational cycle of CALIPSO each station is overpassed within this distance 1-2 times during daytime (typically between 1100 and 1400 UTC) and 1-2 times during night time (typically between 0000 and 0300 UTC). Additional measurements are performed, mainly on a non-regular basis, when CALIPSO overpasses a neighboring station in order to study the horizontal variability of the aerosol distribution. The time schedule for correlative observations is calculated starting from the high-resolution ground-track data provided by NASA, and is updated and distributed to whole network weekly. The EARLINET-CALIPSO correlative dataset represents a statistically significant data set to be used for the validation and full exploitation of the CALIPSO mission, for studying the representativeness of cross sections along an orbit against network observations on a continental scale, and for supporting the continuous, harmonized observation of aerosol and clouds with remote-sensing techniques from space over long time periods

    EARLINET observations related to volcanic eruptions (2000-2010)

    No full text
    A European Aerosol Research Lidar Network to Establish an Aerosol ClimatologyAerosols affect life on earth in several ways. They play an important role in the climate system; the effect of aerosols on the global climate system is one of the major uncertainties of present climate predictions. They play a major role in atmospheric chemistry and hence affect the concentrations of other potentially harmful atmospheric constituents, e.g. ozone. They are an important controlling factor for the radiation budget, in particular in the UV-B part of the spectrum. At ground level, they can be harmful, even toxic, to man, animals, and plants. Because of these adverse effects that aerosols can have on human life, it is necessary to achieve an advanced understanding of the processes that generate, redistribute, and remove aerosols in the atmosphere.A quantitative dataset describing the aerosol vertical, horizontal, and temporal distribution, including its variability on a continental scale, is necessary. The dataset is used to validate and improve models that predict the future state of the atmosphere and its dependence on different scenarios describing economic development, including those actions taken to preserve the quality of the environment. The EARLINET data set is the most comprehensive compilation of data available for this purpose.This project description is taken from: http://www.earlinet.org/index.php?id=earlinet_homepageSummary: Aerosols originating from volcanic emissions have an impact on the climate: sulfate and ash particles from volcanic emissions reflect solar radiation, act as cloud condensation and ice nuclei, and modify the radiative properties and lifetime of clouds, and therefore influence the precipitation cycle. These volcanic particles can also have an impact on environmental conditions and could be very dangerous for aircraft in flight. In addition to the routine measurements, further EARLINET observations are devoted to monitor volcano eruptions. The EARLINET volcanic dataset includes extended observations related to two different volcanoes in Europe Mt. Etna (2001 and 2002 eruptions), and the Eyjafjallajokull volcano in Iceland (April - May 2010 eruption). This dataset includes also recent events of volcanic eruptions in the North Pacific region (2008-2010) that emitted sulfuric acid droplets into the upper troposphere - lower stratosphere (UTLS) height region of the northern hemisphere. The EARLINET volcanic observations in the UTLS are complemented by the long-term stratospheric aerosol observations collected in the Stratosphere category

    EARLINET all observations (2000-2010)

    No full text
    This collection contains all measurements that have been performed in the frame of the EARLINET project during the period April 2000 - December 2010. Some of these measurements are also part of the collections 'Calipso', 'Climatology', 'SaharanDust' or 'VolcanicEruption'. In addition this collection also contains measurements from the categories 'Cirrus', 'DiurnalCycles', 'ForrestFires', 'Photosmog', 'RuralUrban', and 'Stratosphere'. This collection also contains measurements not devoted to any of the above categories. More information about these categories and the contributing stations can be found in the file 'EARLINET_general_introduction.pdf' accompanying this dataset

    EARLINET climatology (2000-2010)

    No full text
    A European Aerosol Research Lidar Network to Establish an Aerosol ClimatologyAerosols affect life on earth in several ways. They play an important role in the climate system; the effect of aerosols on the global climate system is one of the major uncertainties of present climate predictions. They play a major role in atmospheric chemistry and hence affect the concentrations of other potentially harmful atmospheric constituents, e.g. ozone. They are an important controlling factor for the radiation budget, in particular in the UV-B part of the spectrum. At ground level, they can be harmful, even toxic, to man, animals, and plants. Because of these adverse effects that aerosols can have on human life, it is necessary to achieve an advanced understanding of the processes that generate, redistribute, and remove aerosols in the atmosphere.A quantitative dataset describing the aerosol vertical, horizontal, and temporal distribution, including its variability on a continental scale, is necessary. The dataset is used to validate and improve models that predict the future state of the atmosphere and its dependence on different scenarios describing economic development, including those actions taken to preserve the quality of the environment. The EARLINET data set is the most comprehensive compilation of data available for this purpose.This project description is taken from: http://www.earlinet.org/index.php?id=earlinet_homepageSummary: EARLINET climatological lidar observations are performed on a regularschedule of one daytime measurement per week around noon (on Monday), when theboundary layer is usually well developed, and two night-time measurements per week(on Monday and Thursday), with low background light, in order to perform Ramanextinction measurements. This regular schedule for observations minimizes the biasin the dataset possibly related to specific measurement conditions. The resultingdataset is used to obtain unbiased data for climatological studies.This dataset contains profiles of aerosol extinction, backscatter and lidar ratio.Several aerosol extinction/backscatter datasets can be present for the sameclimatological measurement in order to provide profiles either with a better temporalresolution or with an extended height range by using a larger temporal average.This is by far the largest dataset on the aerosol vertical distribution, and it isthe only one which is collected systematically and is covering a whol
    corecore