176 research outputs found

    Design Of Nonpolarizing Achromatic Beam-Splitters With Dielectric Multilayer Coatings

    Get PDF
    Optical beamsplitters often consist of repeated pairs of high and low index quarter-wave layers. At oblique angles of incidence, such coatings typically have a fairly high polarization ratio. Reflectance, transmittance, and phase for the two orthogonal planes of polarization, s and p, are different in general. Here, we present the results of the design of all-dielectric beamsplitter coatings with very low polarization ratios. An initial sinusoidal refractive index profile, optimized with a refining computer program, yields a 50±1% beamsplitter in the 450 to 650 nm wavelength range, with less than 0.5% (abs.) difference between the s and p reflectance in most of this interval. Matching the elements of the characteristic matrix of this design with those of a generic homogeneous multilayer stack yields the starting design A(HL)7HS for a reflectance to transmittance ratio of R:T = 50:50% and 30:70% beamsplitters, which are optimized for the 500 to 600 nm wavelength range and angles of incidence of 40°, 50°, and 60° using a computer program based on a damped least squares refining technique. The average deviation from the nominal beamsplitting ratio is less than 0.5% for all given design examples. The maximum deviations are about 2% in this wavelength range

    Volatile organic emissions from the distillation and pyrolysis of vegetation

    No full text
    International audienceLeaf and woody plant tissue (Pinus ponderosa, Eucalyptus saligna, Quercus gambelli, Saccharum officinarum and Oriza sativa) were heated from 30 to 300°C and volatile organic compound (VOC) emissions were identified and quantified. Major VOC emissions were mostly oxygenated and included acetic acid, furylaldehyde, acetol, pyrazine, terpenes, 2,3-butadione, phenol and methanol, as well as smaller emissions of furan, acetone, acetaldehyde, acetonitrile and benzaldehyde. Total VOC emissions from distillation and pyrolysis were on the order of 10 gC/kgC dry weight of vegetation, as much as 33% and 44% of CO2 emissions (gC(VOC)/gC(CO2)) measured during the same experiments, in air and nitrogen atmospheres, respectively. The emissions are similar in identity and quantity to those from smoldering combustion of woody tissue and of different character than those evolved during flaming combustion. VOC emissions from the distillation of pools and endothermic pyrolysis under low turbulence conditions may produce flammable concentrations near leaves and may facilitate the propagation of wildfires. VOC emissions from charcoal production are also related to distillation and pyrolysis; the emissions of the highly reactive VOCs from production are as large as the carbon monoxide emissions

    Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations

    Get PDF
    We construct a global atmospheric budget for acetaldehyde using a 3-D model of atmospheric chemistry (GEOS-Chem), and use an ensemble of observations to evaluate present understanding of its sources and sinks. Hydrocarbon oxidation provides the largest acetaldehyde source in the model (128 Tg a<sup>−1</sup>, a factor of 4 greater than the previous estimate), with alkanes, alkenes, and ethanol the main precursors. There is also a minor source from isoprene oxidation. We use an updated chemical mechanism for GEOS-Chem, and photochemical acetaldehyde yields are consistent with the Master Chemical Mechanism. We present a new approach to quantifying the acetaldehyde air-sea flux based on the global distribution of light absorption due to colored dissolved organic matter (CDOM) derived from satellite ocean color observations. The resulting net ocean emission is 57 Tg a<sup>−1</sup>, the second largest global source of acetaldehyde. A key uncertainty is the acetaldehyde turnover time in the ocean mixed layer, with quantitative model evaluation over the ocean complicated by known measurement artifacts in clean air. Simulated concentrations in surface air over the ocean generally agree well with aircraft measurements, though the model tends to overestimate the vertical gradient. PAN:NO<sub>x</sub> ratios are well-simulated in the marine boundary layer, providing some support for the modeled ocean source. We introduce the Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) for acetaldehyde and ethanol and use it to quantify their net flux from living terrestrial plants. Including emissions from decaying plants the total direct acetaldehyde source from the land biosphere is 23 Tg a<sup>−1</sup>. Other terrestrial acetaldehyde sources include biomass burning (3 Tg a<sup>−1</sup>) and anthropogenic emissions (2 Tg a<sup>−1</sup>). Simulated concentrations in the continental boundary layer are generally unbiased and capture the spatial gradients seen in observations over North America, Europe, and tropical South America. However, the model underestimates acetaldehyde levels in urban outflow, suggesting a missing source in polluted air. Ubiquitous high measured concentrations in the free troposphere are not captured by the model, and based on present understanding are not consistent with concurrent measurements of PAN and NO<sub>x</sub>: we find no compelling evidence for a widespread missing acetaldehyde source in the free troposphere. We estimate the current US source of ethanol and acetaldehyde (primary + secondary) at 1.3 Tg a<sup>−1</sup> and 7.8 Tg a<sup>−1</sup>, approximately 60{%} and 480% of the corresponding increases expected for a national transition from gasoline to ethanol fuel

    Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry

    Get PDF
    We present simultaneous fast, in-situ measurements of formaldehyde and glyoxal from two rural campaigns, BEARPEX 2009 and BEACHON-ROCS, both located in Pinus Ponderosa forests with emissions dominated by biogenic volatile organic compounds (VOCs). Despite considerable variability in the formaldehyde and glyoxal concentrations, the ratio of glyoxal to formaldehyde, R<sub>GF</sub>, displayed a very regular diurnal cycle over nearly 2 weeks of measurements. The only deviations in R<sub>GF</sub> were toward higher values and were the result of a biomass burning event during BEARPEX 2009 and very fresh anthropogenic influence during BEACHON-ROCS. Other rapid changes in glyoxal and formaldehyde concentrations have hardly any affect on R<sub>GF</sub> and could reflect transitions between low and high NO regimes. The trend of increased R<sub>GF</sub> from both anthropogenic reactive VOC mixtures and biomass burning compared to biogenic reactive VOC mixtures is robust due to the short timescales over which the observed changes in R<sub>GF</sub> occurred. Satellite retrievals, which suggest higher R<sub>GF</sub> for biogenic areas, are in contrast to our observed trends. It remains important to address this discrepancy, especially in view of the importance of satellite retrievals and in situ measurements for model comparison. In addition, we propose that R<sub>GF</sub> represents a useful metric for biogenic or anthropogenic reactive VOC mixtures and, in combination with absolute concentrations of glyoxal and formaldehyde, furthermore represents a useful metric for the extent of anthropogenic influence on overall reactive VOC processing via NO<sub>x</sub>. In particular, R<sub>GF</sub> yields information about not simply the VOCs dominating reactivity in an airmass, but the VOC processing itself that is directly coupled to ozone and secondary organic aerosol production

    VOC emission rates over London and South East England obtained by airborne eddy covariance

    Get PDF
    Volatile organic compounds (VOCs) originate from a variety of sources, and play an intrinsic role in influencing air quality. Some VOCs, including benzene, are carcinogens and so directly affect human health, while others, such as isoprene, are very reactive in the atmosphere and play an important role in the formation of secondary pollutants such as ozone and particles. Here we report spatially-resolved measurements of the surface-to-atmosphere fluxes of VOCs across London and SE England made in 2013 and 2014. High-frequency 3-D wind velocities and VOC volume mixing ratios (made by proton transfer reaction-mass spectrometry) were obtained from a low-flying aircraft and used to calculate fluxes using the technique of eddy covariance. A footprint model was then used to quantify the flux contribution from the ground surface at spatial resolution of 100 m, averaged to 1 km. Measured fluxes of benzene over Greater London showed positive agreement with the UK's National Atmospheric Emissions Inventory, with the highest fluxes originating from central London. Comparison of MTBE and toluene fluxes suggest that petroleum evaporation is an important emission source of toluene in central London. Outside London, increased isoprene emissions were observed over wooded areas, at rates greater than those predicted by a UK regional application of the European Monitoring and Evaluation Programme model (EMEP4UK). This work demonstrates the applicability of the airborne eddy covariance method to the determination of anthropogenic and biogenic VOC fluxes and the possibility of validating emission inventories through measurements

    The X-Ray Derived Cosmological Star Formation History and the Galaxy X-Ray Luminosity Functions in the Chandra Deep Fields North and South

    Get PDF
    The cosmological star formation rate in the combined Chandra Deep Fields North and South is derived from our X-Ray Luminosity Function for Galaxies in these Deep Fields. Mild evolution is seen up to redshift order unity with SFR ~ (1 + z)^{2.7}. This is the first directly observed normal star-forming galaxy X-ray luminosity function (XLF) at cosmologically interesting redshifts (z>0). This provides the most direct measure yet of the X-ray derived cosmic star-formation history of the Universe. We make use of Bayesian statistical methods to classify the galaxies and the two types of AGN, finding the most useful discriminators to be the X-ray luminosity, X-ray hardness ratio, and X-ray to optical flux ratio. There is some residual AGN contamination in the sample at the bright end of the luminosity function. Incompleteness slightly flattens the XLF at the faint end of the luminosity function. The XLF has a lognormal distribution and agrees well with the radio and infrared luminosity functions. However, the XLF does not agree with the Schechter luminosity function for the H-alpha LF indicating that additional and different physical processes may be involved in the establishment of the lognormal form of the XLF. The agreement of our star formation history points with the other star formation determinations in different wavebands (IR, Radio, H-alpha) gives an interesting constraint on the IMF, and X-rays may be measuring directly the binary star formation history of the Universe. X-ray studies will continue to be useful for probing the star formation history of the universe by avoiding problems of obscuration. Star formation may therefore be measured in more detail by deep surveys with future x-ray missions.Comment: Accepted for publication in ApJ. 19 pages with 10 figures formatted with emulateapj. Version with B/W only figures available at http://www.pha.jhu.edu/~ptak/paper

    Observations of Diurnal to Weekly Variations of Monoterpene-Dominated Fluxes of Volatile Organic Compounds from Mediterranean Forests: Implications for Regional Modeling

    Full text link
    The Estate of Castelporziano (Rome, Italy) hosts many ecosystems representative of Mediterranean vegetation, especially holm oak and pine forests and dune vegetation. In this work, basal emission factors (BEFs) of biogenic volatile organic compounds (BVOCs) obtained by Eddy Covariance in a field campaign using a proton transfer reaction-time-of-flight-mass spectrometer (PTR-TOF-MS) were compared to BEFs reported in previous studies that could not measure fluxes in real-time. Globally, broadleaf forests are dominated by isoprene emissions, but these Mediterranean ecosystems are dominated by strong monoterpene emitters, as shown by the new BEFs. The original and new BEFs were used to parametrize the model of emissions of gases and aerosols from nature (MEGAN v2.1), and model outputs were compared with measured fluxes. Results showed good agreement between modeled and measured fluxes when a model was used to predict radiative transfer and energy balance across the canopy. We then evaluated whether changes in BVOC emissions can affect the chemistry of the atmosphere and climate at a regional level. MEGAN was run together with the land surface model (community land model, CLM v4.0) of the community earth system model (CESM v1.0). Results highlighted that tropospheric ozone concentration and air temperature predicted from the model are sensitive to the magnitude of BVOC emissions, thus demonstrating the importance of adopting the proper BEF values for model parametrization

    Search for gravitational wave bursts in LIGO's third science run

    Get PDF
    We report on a search for gravitational wave bursts in data from the three LIGO interferometric detectors during their third science run. The search targets subsecond bursts in the frequency range 100-1100 Hz for which no waveform model is assumed, and has a sensitivity in terms of the root-sum-square (rss) strain amplitude of hrss ~ 10^{-20} / sqrt(Hz). No gravitational wave signals were detected in the 8 days of analyzed data.Comment: 12 pages, 6 figures. Amaldi-6 conference proceedings to be published in Classical and Quantum Gravit
    corecore