107 research outputs found

    Zonally opposing shifts of the intertropical convergence zone in response to climate change

    Full text link
    Future changes in the location of the intertropical convergence zone (ITCZ) due to climate change are of high interest since they could substantially alter precipitation patterns in the tropics and subtropics. Although models predict a future narrowing of the ITCZ during the 21st century in response to climate warming, uncertainties remain large regarding its future position, with most past work focusing on the zonal-mean ITCZ shifts. Here we use projections from 27 state-of-the-art climate models (CMIP6) to investigate future changes in ITCZ location as a function of longitude and season, in response to climate warming. We document a robust zonally opposing response of the ITCZ, with a northward shift over eastern Africa and the Indian Ocean, and a southward shift in the eastern Pacific and Atlantic Ocean by 2100, for the SSP3-7.0 scenario. Using a two-dimensional energetics framework, we find that the revealed ITCZ response is consistent with future changes in the divergent atmospheric energy transport over the tropics, and sector-mean shifts of the energy flux equator (EFE). The changes in the EFE appear to be the result of zonally opposing imbalances in the hemispheric atmospheric heating over the two sectors, consisting of increases in atmospheric heating over Eurasia and cooling over the Southern Ocean, which contrast with atmospheric cooling over the North Atlantic Ocean due to a model-projected weakening of the Atlantic meridional overturning circulation

    Globally Gridded Satellite (GridSat) Observations for Climate Studies

    Get PDF
    Geostationary satellites have provided routine, high temporal resolution Earth observations since the 1970s. Despite the long period of record, use of these data in climate studies has been limited for numerous reasons, among them: there is no central archive of geostationary data for all international satellites, full temporal and spatial resolution data are voluminous, and diverse calibration and navigation formats encumber the uniform processing needed for multi-satellite climate studies. The International Satellite Cloud Climatology Project set the stage for overcoming these issues by archiving a subset of the full resolution geostationary data at approx.10 km resolution at 3 hourly intervals since 1983. Recent efforts at NOAA s National Climatic Data Center to provide convenient access to these data include remapping the data to a standard map projection, recalibrating the data to optimize temporal homogeneity, extending the record of observations back to 1980, and reformatting the data for broad public distribution. The Gridded Satellite (GridSat) dataset includes observations from the visible, infrared window, and infrared water vapor channels. Data are stored in the netCDF format using standards that permit a wide variety of tools and libraries to quickly and easily process the data. A novel data layering approach, together with appropriate satellite and file metadata, allows users to access GridSat data at varying levels of complexity based on their needs. The result is a climate data record already in use by the meteorological community. Examples include reanalysis of tropical cyclones, studies of global precipitation, and detection and tracking of the intertropical convergence zone

    Thank You to Our 2022 Peer Reviewers

    Get PDF
    On behalf of the journal, AGU, and the scientific community, the editors of Geophysical Research Letters would like to sincerely thank those who reviewed manuscripts for us in 2022. The hours reading and commenting on manuscripts not only improve the manuscripts, but also increase the scientific rigor of future research in the field. With the advent of AGU\u27s data policy, many reviewers have also helped immensely to evaluate the accessibility and availability of data, and many have provided insightful comments that helped to improve the data presentation and quality. We greatly appreciate the assistance of the reviewers in advancing open science, which is a key objective of AGU\u27s data policy. We particularly appreciate the timely reviews in light of the demands imposed by the rapid review process at Geophysical Research Letters. We received 6,687 submissions in 2022 and 5,247 reviewers contributed to their evaluation by providing 8,720 reviews in total. We deeply appreciate their contributions in these challenging times

    Thank You to Our 2018 Peer Reviewers

    Full text link
    On behalf of the journal, AGU, and the scientific community, the Editors would like to sincerely thank those who reviewed manuscripts for Geophysical Research Letters in 2018. The hours reading and commenting on manuscripts not only improves the manuscripts but also increases the scientific rigor of future research in the field. We particularly appreciate the timely reviews, in light of the demands imposed by the rapid review process at Geophysical Research Letters. With the revival of the “major revisions” decisions, we appreciate the reviewers’ efforts on multiple versions of some manuscripts. Many of those listed below went beyond and reviewed three or more manuscripts for our journal, and those are indicated in italics. In total, 4,484 referees contributed to 7,557 individual reviews in journal. Thank you again. We look forward to the coming year of exciting advances in the field and communicating those advances to our community and to the broader public.Key PointIn total, 4,484 referees contributed to 7,557 individual reviews in journalPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152982/1/grl59194.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152982/2/grl59194_am.pd

    Thank You to Our 2019 Peer Reviewers

    Full text link
    On behalf of the journal, AGU, and the scientific community, the editors would like to sincerely thank those who reviewed the manuscripts for Geophysical Research Letters in 2019. The hours reading and commenting on manuscripts not only improve the manuscripts but also increase the scientific rigor of future research in the field. We particularly appreciate the timely reviews in light of the demands imposed by the rapid review process at Geophysical Research Letters. With the revival of the “major revisions” decisions, we appreciate the reviewers’ efforts on multiple versions of some manuscripts. With the advent of AGU’s data policy, many reviewers have helped immensely to evaluate the accessibility and availability of data associated with the papers they have reviewed, and many have provided insightful comments that helped to improve the data presentation and quality. We greatly appreciate the assistance of the reviewers in advancing open science, which is a key objective of AGU’s data policy. Many of those listed below went beyond and reviewed three or more manuscripts for our journal, and those are indicated in italics.Key PointThe editors thank the 2019 peer reviewersPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162718/2/grl60415.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162718/1/grl60415_am.pd

    Appreciation of 2017 GRL Peer Reviewers

    Full text link
    Thank you to those who reviewed in 2017 for Geophysical Research Letters.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146420/1/grl57305_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146420/2/grl57305.pd

    The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Quantifying Uncertainties in Atmospheric River Climatology

    Get PDF
    Atmospheric rivers (ARs) are now widely known for their association with high‐impact weather events and long‐term water supply in many regions. Researchers within the scientific community have developed numerous methods to identify and track of ARs—a necessary step for analyses on gridded data sets, and objective attribution of impacts to ARs. These different methods have been developed to answer specific research questions and hence use different criteria (e.g., geometry, threshold values of key variables, and time dependence). Furthermore, these methods are often employed using different reanalysis data sets, time periods, and regions of interest. The goal of the Atmospheric River Tracking Method Intercomparison Project (ARTMIP) is to understand and quantify uncertainties in AR science that arise due to differences in these methods. This paper presents results for key AR‐related metrics based on 20+ different AR identification and tracking methods applied to Modern‐Era Retrospective Analysis for Research and Applications Version 2 reanalysis data from January 1980 through June 2017. We show that AR frequency, duration, and seasonality exhibit a wide range of results, while the meridional distribution of these metrics along selected coastal (but not interior) transects are quite similar across methods. Furthermore, methods are grouped into criteria‐based clusters, within which the range of results is reduced. AR case studies and an evaluation of individual method deviation from an all‐method mean highlight advantages/disadvantages of certain approaches. For example, methods with less (more) restrictive criteria identify more (less) ARs and AR‐related impacts. Finally, this paper concludes with a discussion and recommendations for those conducting AR‐related research to consider.Fil: Rutz, Jonathan J.. National Ocean And Atmospheric Administration; Estados UnidosFil: Shields, Christine A.. National Center for Atmospheric Research; Estados UnidosFil: Lora, Juan M.. University of Yale; Estados UnidosFil: Payne, Ashley E.. University of Michigan; Estados UnidosFil: Guan, Bin. California Institute of Technology; Estados UnidosFil: Ullrich, Paul. University of California at Davis; Estados UnidosFil: O'Brien, Travis. Lawrence Berkeley National Laboratory; Estados UnidosFil: Leung, Ruby. Pacific Northwest National Laboratory; Estados UnidosFil: Ralph, F. Martin. Center For Western Weather And Water Extremes; Estados UnidosFil: Wehner, Michael. Lawrence Berkeley National Laboratory; Estados UnidosFil: Brands, Swen. Meteogalicia; EspañaFil: Collow, Allison. Universities Space Research Association; Estados UnidosFil: Goldenson, Naomi. University of California at Los Angeles; Estados UnidosFil: Gorodetskaya, Irina. Universidade de Aveiro; PortugalFil: Griffith, Helen. University of Reading; Reino UnidoFil: Kashinath, Karthik. Lawrence Bekeley National Laboratory; Estados UnidosFil: Kawzenuk, Brian. Center For Western Weather And Water Extremes; Reino UnidoFil: Krishnan, Harinarayan. Lawrence Berkeley National Laboratory; Estados UnidosFil: Kurlin, Vitaliy. University of Liverpool; Reino UnidoFil: Lavers, David. European Centre For Medium-range Weather Forecasts; Estados UnidosFil: Magnusdottir, Gudrun. University of California at Irvine; Estados UnidosFil: Mahoney, Kelly. Universidad de Lisboa; PortugalFil: Mc Clenny, Elizabeth. University of California at Davis; Estados UnidosFil: Muszynski, Grzegorz. University of Liverpool; Reino Unido. Lawrence Bekeley National Laboratory; Estados UnidosFil: Nguyen, Phu Dinh. University of California at Irvine; Estados UnidosFil: Prabhat, Mr.. Lawrence Bekeley National Laboratory; Estados UnidosFil: Qian, Yun. Pacific Northwest National Laboratory; Estados UnidosFil: Ramos, Alexandre M.. Universidade Nova de Lisboa; PortugalFil: Sarangi, Chandan. Pacific Northwest National Laboratory; Estados UnidosFil: Viale, Maximiliano. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales; Argentin

    Extratropical Impacts on Atlantic Tropical Cyclone Activity

    Full text link
    With warm sea surface temperature (SST) anomalies in the tropical Atlantic and cold SST anomalies in the east Pacific, the unusually quiet hurricane season in 2013 was a surprise to the hurricane community. The authors' analyses suggest that the substantially suppressed Atlantic tropical cyclone (TC) activity in August 2013 can be attributed to frequent breaking of midlatitude Rossby waves, which led to the equatorward intrusion of cold and dry extratropical air. The resultant mid- to upper-tropospheric dryness and strong vertical wind shear hindered TC development. Using the empirical orthogonal function analysis, the active Rossby wave breaking in August 2013 was found to be associated with a recurrent mode of the midlatitude jet stream over the North Atlantic, which represents the variability of the intensity and zonal extent of the jet. This mode is significantly correlated with Atlantic hurricane frequency. The correlation coefficient is comparable to the correlation of Atlantic hurricane frequency with the main development region (MDR) relative SST and higher than that with the Niño-3.4 index. This study highlights the extratropical impacts on Atlantic TC activity, which may have important implications for the seasonal predictability of Atlantic TCs
    • 

    corecore