30 research outputs found

    EbMYBP1, a R2R3-MYB transcription factor, promotes flavonoid biosynthesis in Erigeron breviscapus

    Get PDF
    Erigeron breviscapus, a traditional Chinese medicinal plant, is enriched in flavonoids that are beneficial to human health. While we know that R2R3-MYB transcription factors (TFs) are crucial to flavonoid pathway, the transcriptional regulation of flavonoid biosynthesis in E. breviscapus has not been fully elucidated. Here, EbMYBP1, a R2R3-MYB transcription factor, was uncovered as a regulator involved in the regulation of flavonoid accumulation. Transcriptome and metabolome analysis revealed that a large group of genes related to flavonoid biosynthesis were significantly changed, accompanied by significantly increased concentrations of the flavonoid in EbMYBP1-OE transgenic tobacco compared with the wild-type (WT). In vitro and in vivo investigations showed that EbMYBP1 participated in flavonoid biosynthesis, acting as a nucleus-localized transcriptional activator and activating the transcription of flavonoid-associated genes like FLS, F3H, CHS, and CHI by directly binding to their promoters. Collectively, these new findings are advancing our understanding of the transcriptional regulation that modulates the flavonoid biosynthesis

    Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review

    Get PDF
    Sludge or waste activated sludge (WAS) generated from wastewater treatment plants may be considered a nuisance. It is a key source for secondary environmental contamination on account of the presence of diverse pollutants (polycyclic aromatic hydrocarbons, dioxins, furans, heavy metals, etc.). Innovative and cost-effective sludge treatment pathways are a prerequisite for the safe and environment-friendly disposal of WAS. This article delivers an assessment of the leading disposal (volume reduction) and energy recovery routes such as anaerobic digestion, incineration, pyrolysis, gasification and enhanced digestion using microbial fuel cell along with their comparative evaluation, to measure their suitability for different sludge compositions and resources availability. Furthermore, the authors shed light on the bio-refinery and resource recovery approaches to extract value added products and nutrients from WAS, and control options for metal elements and micro-pollutants in sewage sludge. Recovery of enzymes, bio-plastics, bio-pesticides, proteins and phosphorus are discussed as a means to visualize sludge as a potential opportunity instead of a nuisance

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Spatio-Temporal Characteristics and Variation Pattern of the Atmospheric Particulate Matter Concentration: A Case Study of the Beijing–Tianjin–Hebei Region, China

    No full text
    Based on measurement data from air quality monitoring stations, the spatio-temporal characteristics of the concentrations of particles with aerodynamic equivalent diameters smaller than 2.5 and 10 μm (PM2.5 and PM10, respectively) in the Beijing–Tianjin–Hebei (BTH) region from 2015 to 2018 were analysed at yearly, seasonal, monthly, daily and hourly scales. The results indicated that (1) from 2015 to 2018, the annual average values of PM2.5 and PM10 concentrations and the PM2.5/PM10 ratio in the study area decreased each year; (2) the particulate matter (PM) concentration in winter was significantly higher than that in summer, and the PM2.5/PM10 ratio was highest in winter and lowest in spring; (3) the PM2.5 and PM10 concentrations exhibited a pattern of double peaks and valleys throughout the day, reaching peak values at night and in the morning and valleys in the morning and afternoon; and (4) with the use of an improved sine function to simulate the change trend of the monthly mean PM concentration, the fitting R2 values for PM2.5 and PM10 in the whole study area were 0.74 and 0.58, respectively. Moreover, the high-value duration was shorter, the low-value duration was longer, and the concentration decrease rate was slower than the increase rate

    Spatio-Temporal Characteristics and Variation Pattern of the Atmospheric Particulate Matter Concentration: A Case Study of the Beijing–Tianjin–Hebei Region, China

    No full text
    Based on measurement data from air quality monitoring stations, the spatio-temporal characteristics of the concentrations of particles with aerodynamic equivalent diameters smaller than 2.5 and 10 μm (PM2.5 and PM10, respectively) in the Beijing–Tianjin–Hebei (BTH) region from 2015 to 2018 were analysed at yearly, seasonal, monthly, daily and hourly scales. The results indicated that (1) from 2015 to 2018, the annual average values of PM2.5 and PM10 concentrations and the PM2.5/PM10 ratio in the study area decreased each year; (2) the particulate matter (PM) concentration in winter was significantly higher than that in summer, and the PM2.5/PM10 ratio was highest in winter and lowest in spring; (3) the PM2.5 and PM10 concentrations exhibited a pattern of double peaks and valleys throughout the day, reaching peak values at night and in the morning and valleys in the morning and afternoon; and (4) with the use of an improved sine function to simulate the change trend of the monthly mean PM concentration, the fitting R2 values for PM2.5 and PM10 in the whole study area were 0.74 and 0.58, respectively. Moreover, the high-value duration was shorter, the low-value duration was longer, and the concentration decrease rate was slower than the increase rate

    Combining Local and Global Measures for DIBR-Synthesized Image Quality Evaluation

    No full text

    Enhanced circulation half-life of site-specific PEGylated rhG-CSF: Optimization of PEG molecular weight

    No full text
    Recombinant human granulocyte colony stimulating factor (rhG-CSF) and its PEGylated product "mono-PEG20-GCSF" have already been widely used for treatment of all kinds of neutropenia. However, I he high required dosage of mono-PEG20-GCSF made it relatively expensive in clinical use. We postulated that an N-terminal site-specific PEGylated rhG-CSF with higher PEG Mw (PEG30 kDa) might be able to achieve longer circulation half-life while retaining its bioactivity, allowing the reduction of dosage for clinical use. rhG-CSF was PEGylated at the N-terminus by 5 kDa, 10 kDa, 20 kDa and 30 kDa methoxypoly(ethylene glycol)-propionaldehyde (niPEG-ALD), and the four PEGylates were compared with respect to reaction, separation, characterization and also in vivo/in vitro activity, results showed that the mPEG-ALD of higher Mw demonstrated better N-terminal site-specific selectivity. separation purity and yield. The production cost and in vitro activity of mono-PEG30-GCSF and rnono-PEG20-GCSF were almost the same, while mono-PEG30-GCSF showed longer in vivo circulation half-life and 60% higher drug bioavailability than mono-PEG20-GCSF Consequently, mono-PEG30-GCSF shall be administered at a lower dosage than mono-PEG20-GCSF while retaining the same therapeutic efficacy. (C) 2009 Elsevier B.V. All rights reserved

    Functional gigaporous polystyrene microspheres facilitating separation of poly(ethylene glycol)-protein conjugate

    No full text
    A novel sulfopropyl gigaporous polystyrene (SP-GP) microsphere enhancing the separation of poly(ethylene glycol)-protein (PEGylated protein) was first presented. The SP-GP microspheres were successfully prepared by introducing sulfopropyl groups into agarose-coated gigaporous polystyrene microspheres and used as chromatography media. Compared with a commercial medium, SP-GP microspheres exhibited improved column efficiency and reduced backpressure with increasing flow velocity, which could ensure its use in high-speed chromatography. Furthermore, a higher protein recovery and purity of the PEGylated protein could be obtained, even when SP-GP was applied at a flow velocity of 1224 cm h(-1). Additionally, the dynamic binding capacity (DBC) of SP-GP was significantly improved, which was higher than 10 mg mL(-1) medium even at a flow velocity of 306 cm h(-1). Further investigation using a laser scanning confocal microscope (LSCM) demonstrated that the static adsorption equilibrium of the PEGylated protein on SP-GP could be completed in 5 min, whereas a much longer period (ca. 60 min) was required for the commercial medium, indicating that the mass transfer of SP-GP was much faster with the gigaporous structure. All of these results strongly support that our developed SP-GP could serve as a promising cation exchange chromatography resin for high-speed separation, especially for biomolecules of high molecular weight. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved

    Rapid preparations and thermoelectric properties of bulk skutterudites with in situ nanostructures

    No full text
    In this paper, Ge and Te co-doped skutterudites Co4Sb11Ge1-xTex were synthesized via two rapid preparation methods, melt quenching-spark plasma sintering (MQ-SPS) and high pressure-spark plasma sintering (HP-SPS). Bulk skutterudites can be synthesized in as little as 6 hours by MQ-SPS and under 1 hour by HP-SPS, as shown by both scanning electron microscopy and x-ray diffraction. This is a dramatic improvement over traditional methods requiring a full week of processing. The Seebeck coefficient, electrical conductivity and thermal conductivity across a temperature range of 300 to 800 K where measured. This work shows that the processing by HP-SPS significantly decreases thermal and lattice thermal conductivities, while increasing the temperature-dependent Seebeck maximum. Consequently, the HP-Co4Sb11Ge1-xTex samples show a higher dimensionless figure of merit compared with that of MQ-Co4Sb11Ge1-xTex samples throughout the measured temperature range

    Preparation and Characterization of Semi-Alicyclic Polyimides Containing Trifluoromethyl Groups for Optoelectronic Application

    No full text
    Transparent polyimides (PI) films with outstanding overall performance are attractive for next generation optoelectronic and microelectronic applications. Semi-alicyclic PIs derived from alicyclic dianhydrides and aromatic diamines have proved effective to prepare transparent PIs with high transmittance. To optimize the combined properties of semi-alicyclic PIs, incorporating bulky trifluoromethyl groups into the backbones is regarded as a powerful tool. However, the lack of fundamental understanding of structure–property relationships of fluorinated semi-alicyclic PIs constrains the design and engineering of advanced films for such challenging applications. Herein, a series of semi-alicyclic PIs derived from alicyclic dianhydrides and trifluoromethyl-containing aromatic diamines was synthesized by solution polycondensation at high temperature. The effects of alicyclic structures and bulky trifluoromethyl groups on thermal, dielectric and optical properties of PIs were investigated systematically. These PI films had excellent solubility, low water absorption and good mechanical property. They showed high heat resistance with Tg in the range of 294–390 °C. It is noted that tensile strength and thermal stability were greatly affected by the rigid linkages and alicyclic moieties, respectively. These films exhibited obviously low refractive indices and significantly reduced dielectric constants from 2.61 to 2.76, together with low optical birefringence and dielectric anisotropy. Highly transparent films exhibited cutoff wavelength even as low as 298 nm and transmittance at 500 nm over 85%, displaying almost colorless appearance with yellowness index (b*) below 4.2. The remarkable optical improvement should be mainly ascribed to both weak electron-accepting alicyclic units and bulky electron-withdrawing trifluoromethyl or sulfone groups. The present work provides an effective strategy to design molecular structures of optically transparent PIs for a trade-off between solution-processability, low water uptake, good toughness, high heat resistance, low dielectric constant and excellent optical transparency
    corecore