110 research outputs found

    The asymmetric quantum Rabi model and generalised Pöschl–Teller potentials

    Get PDF
    Starting with the Gaudin-like Bethe ansatz equations associated with the quasi-exactly solved (QES) exceptional points of the asymmetric quantum Rabi model (AQRM) a spectral equivalence is established with QES hyperbolic Schrödinger potentials on the line. This leads to particular QES Pöschl-Teller potentials. The complete spectral equivalence is then established between the AQRM and generalised Pöschl-Teller potentials. This result extends a previous mapping between the symmetric quantum Rabi model and a QES Pöschl-Teller potential. The complete spectral equivalence between the two systems suggests that the physics of the generalised Pöschl-Teller potentials may also be explored in experimental realisations of the quantum Rabi model

    Triglyceride-glucose index and the risk of heart failure: Evidence from two large cohorts and a mendelian randomization analysis.

    Get PDF
    The relationship between triglyceride-glucose (TyG) index, an emerging marker of insulin resistance, and the risk of incident heart failure (HF) was unclear. This study thus aimed to investigate this relationship. Subjects without prevalent cardiovascular diseases from the prospective Kailuan cohort (recruited during 2006-2007) and a retrospective cohort of family medicine patients from Hong Kong (recruited during 2000-2003) were followed up until December 31st, 2019 for the outcome of incident HF. Separate adjusted hazard ratios (aHRs) summarizing the relationship between TyG index and HF risk in the two cohorts were combined using a random-effect meta-analysis. Additionally, a two-sample Mendelian randomization (MR) of published genome-wide association study data was performed to assess the causality of observed associations. In total, 95,996 and 19,345 subjects from the Kailuan and Hong Kong cohorts were analyzed, respectively, with 2,726 cases of incident HF in the former and 1,709 in the latter. Subjects in the highest quartile of TyG index had the highest risk of incident HF in both cohorts (Kailuan: aHR 1.23 (95% confidence interval: 1.09-1.39), P<sub>Trend</sub> <0.001; Hong Kong: aHR 1.21 (1.04-1.40), P<sub>Trend</sub> =0.007; both compared with the lowest quartile). Meta-analysis showed similar results (highest versus lowest quartile: HR 1.22 (1.11-1.34), P < 0.001). Findings from MR analysis, which included 47,309 cases and 930,014 controls, supported a causal relationship between higher TyG index and increased risk of HF (odds ratio 1.27 (1.15-1.40), P < 0.001). A higher TyG index is an independent and causal risk factor for incident HF in the general population. URL: https://www.chictr.org.cn ; Unique identifier: ChiCTR-TNRC-11,001,489. [Abstract copyright: © 2022. The Author(s).

    Perovskite quantum dot solar cells fabricated from recycled lead-acid battery waste

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Materials Letters, copyright © 2021 American Chemical Societ, after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsmaterialslett.1c00592.A cost-effective and environmentally friendly Pb source is a prerequisite for achieving large-scale, low-cost perovskite photovoltaic devices. Currently, the commonly used method to prepare the lead source is based on a fire smelting process, requiring a high temperature of more than 1000 °C, which results in environmental pollution. Spent car lead acid batteries are an environmentally hazardous waste; however, they can alternatively serve as an abundant and inexpensive Pb source. Due to “self-purification”, quantum dots feature a high tolerance of impurities in the precursor since the impurities tend to be expelled from the small crystalline cores during colloidal nucleation. Herein, PbI2 recycled from spent lead acid batteries via a facile low-temperature solution process is used to synthesize CsPbI3 quantum dots, which simultaneously brings multiple benefits including (1) avoiding pollution originating from the fire smelting process; (2) recycling the Pb waste from batteries; and (3) synthesizing high-quality quantum dots. The resulting CsPbI3 quantum dots have photophysical properties such as PLQY and carrier lifetimes on par with those synthesized from the commercial PbI2 due to expelling of the impurity Na atoms. The resulting solar cells deliver comparable power conversion efficiencies: 14.0% for the cells fabricated using recycled PbI2 and 14.7% for the cells constructed using commercial PbI2. This work paves a new and feasible path to applying recycled Pb sources in perovskite photovoltaics.Peer ReviewedPostprint (author's final draft

    An atlas of DNA methylomes in porcine adipose and muscle tissues

    Get PDF
    It is evident that epigenetic factors, especially DNA methylation, have essential roles in obesity development. Here, using pig as a model, we investigate the systematic association between DNA methylation and obesity. We sample eight variant adipose and two distinct skeletal muscle tissues from three pig breeds living within comparable environments but displaying distinct fat level. We generate 1,381 Gb of sequence data from 180 methylated DNA immunoprecipitation libraries, and provide a genome-wide DNA methylation map as well as a gene expression map for adipose and muscle studies. The analysis shows global similarity and difference among breeds, sexes and anatomic locations, and identifies the differentially methylated regions. The differentially methylated regions in promoters are highly associated with obesity development via expression repression of both known obesity-related genes and novel genes. This comprehensive map provides a solid basis for exploring epigenetic mechanisms of adipose deposition and muscle growth

    Triglyceride-glucose index and the risk of heart failure: Evidence from two large cohorts and a mendelian randomization analysis

    Get PDF
    The relationship between triglyceride-glucose (TyG) index, an emerging marker of insulin resistance, and the risk of incident heart failure (HF) was unclear. This study thus aimed to investigate this relationship. Subjects without prevalent cardiovascular diseases from the prospective Kailuan cohort (recruited during 2006-2007) and a retrospective cohort of family medicine patients from Hong Kong (recruited during 2000-2003) were followed up until December 31st, 2019 for the outcome of incident HF. Separate adjusted hazard ratios (aHRs) summarizing the relationship between TyG index and HF risk in the two cohorts were combined using a random-effect meta-analysis. Additionally, a two-sample Mendelian randomization (MR) of published genome-wide association study data was performed to assess the causality of observed associations. In total, 95,996 and 19,345 subjects from the Kailuan and Hong Kong cohorts were analyzed, respectively, with 2,726 cases of incident HF in the former and 1,709 in the latter. Subjects in the highest quartile of TyG index had the highest risk of incident HF in both cohorts (Kailuan: aHR 1.23 (95% confidence interval: 1.09-1.39), P<sub>Trend</sub> <0.001; Hong Kong: aHR 1.21 (1.04-1.40), P<sub>Trend</sub> =0.007; both compared with the lowest quartile). Meta-analysis showed similar results (highest versus lowest quartile: HR 1.22 (1.11-1.34), P < 0.001). Findings from MR analysis, which included 47,309 cases and 930,014 controls, supported a causal relationship between higher TyG index and increased risk of HF (odds ratio 1.27 (1.15-1.40), P < 0.001). A higher TyG index is an independent and causal risk factor for incident HF in the general population

    Development and validation of a three-dimensional deep learning-based system for assessing bowel preparation on colonoscopy video

    Get PDF
    BackgroundThe performance of existing image-based training models in evaluating bowel preparation on colonoscopy videos was relatively low, and only a few models used external data to prove their generalization. Therefore, this study attempted to develop a more precise and stable AI system for assessing bowel preparation of colonoscopy video.MethodsWe proposed a system named ViENDO to assess the bowel preparation quality, including two CNNs. First, Information-Net was used to identify and filter out colonoscopy video frames unsuitable for Boston bowel preparation scale (BBPS) scoring. Second, BBPS-Net was trained and tested with 5,566 suitable short video clips through three-dimensional (3D) convolutional neural network (CNN) technology to detect BBPS-based insufficient bowel preparation. Then, ViENDO was applied to complete withdrawal colonoscopy videos from multiple centers to predict BBPS segment scores in clinical settings. We also conducted a human-machine contest to compare its performance with endoscopists.ResultsIn video clips, BBPS-Net for determining inadequate bowel preparation generated an area under the curve of up to 0.98 and accuracy of 95.2%. When applied to full-length withdrawal colonoscopy videos, ViENDO assessed bowel cleanliness with an accuracy of 93.8% in the internal test set and 91.7% in the external dataset. The human-machine contest demonstrated that the accuracy of ViENDO was slightly superior compared to most endoscopists, though no statistical significance was found.ConclusionThe 3D-CNN-based AI model showed good performance in evaluating full-length bowel preparation on colonoscopy video. It has the potential as a substitute for endoscopists to provide BBPS-based assessments during daily clinical practice

    Colorimetric nanofibers as optical sensors

    Get PDF
    Sensors play a major role in many applications today, ranging from biomedicine to safety equipment, where they detect and warn us about changes in the environment. Nanofibers, characterized by high porosity, flexibility, and a large specific surface area, are the ideal material for ultrasensitive, fastresponding, and user-friendly sensor design. Indeed, a large specific surface area increases the sensitivity and response time of the sensor as the contact area with the analyte is enlarged. Thanks to the flexibility of membranes, nanofibrous sensors cannot only be applied in high-end analyte detection, but also in personal, daily use. Many different nanofibrous sensors have already been designed; albeit, the most straightforward and easiest-to-interpret sensor response is a visual change in color, which is of particular interest in the case of warning signals. Recently, many researchers have focused on the design of so-called colorimetric nanofibers, which typically involve the incorporation of a colorimetric functionality into the nanofibrous matrix. Many different strategies have been used and explored for colorimetric nanofibrous sensor design, which are outlined in this feature article. The many examples and applications demonstrate the value of colorimetric nanofibers for advanced optical sensor design, and could provide directions for future research in this area

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore