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Abstract
Background The relationship between triglyceride-glucose (TyG) index, an emerging marker of insulin resistance, 
and the risk of incident heart failure (HF) was unclear. This study thus aimed to investigate this relationship.

Methods Subjects without prevalent cardiovascular diseases from the prospective Kailuan cohort (recruited during 
2006–2007) and a retrospective cohort of family medicine patients from Hong Kong (recruited during 2000–2003) 
were followed up until December 31st, 2019 for the outcome of incident HF. Separate adjusted hazard ratios 
(aHRs) summarizing the relationship between TyG index and HF risk in the two cohorts were combined using a 
random-effect meta-analysis. Additionally, a two-sample Mendelian randomization (MR) of published genome-wide 
association study data was performed to assess the causality of observed associations.

Results In total, 95,996 and 19,345 subjects from the Kailuan and Hong Kong cohorts were analyzed, respectively, 
with 2,726 cases of incident HF in the former and 1,709 in the latter. Subjects in the highest quartile of TyG index had 
the highest risk of incident HF in both cohorts (Kailuan: aHR 1.23 (95% confidence interval: 1.09–1.39), PTrend <0.001; 
Hong Kong: aHR 1.21 (1.04–1.40), PTrend =0.007; both compared with the lowest quartile). Meta-analysis showed similar 
results (highest versus lowest quartile: HR 1.22 (1.11–1.34), P < 0.001). Findings from MR analysis, which included 
47,309 cases and 930,014 controls, supported a causal relationship between higher TyG index and increased risk of HF 
(odds ratio 1.27 (1.15–1.40), P < 0.001).
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Introduction
Heart failure (HF) is associated with significant morbid-
ity and mortality, with contemporary five-year survival 
rates of less than 50% [1]. The prevalence of HF has been 
estimated to be 1–2% in developed countries and is pro-
jected to double by 2060 [2, 3]. Given the enormous pub-
lic health and socioeconomic burden caused by HF, it is 
critically important to identify individuals at high risk of 
HF and to implement preventive interventions as early as 
possible [4].

Recently, the role of metabolic disorders in the devel-
opment of HF has been increasingly investigated [5]. 
Insulin resistance, a hallmark of type II diabetes mel-
litus and metabolic syndrome, has been associated with 
adverse cardiac remodeling and dysfunction [6]. Molecu-
lar studies have provided ample evidence for the etiologi-
cal role of insulin resistance in the development of HF 
[7, 8]. However, the gold standard method for measuring 
insulin sensitivity, the hyperinsulinaemic-euglycaemic 
clamp test, is time-consuming and invasive [9], which has 
impeded its widespread use in clinical practice.

The triglyceride-glucose (TyG) index, a simple, dimen-
sionless marker derived from fasting blood triglyceride 
and glucose levels as measured in routine biochemical 
tests, has been proposed and validated as a surrogate 
marker of insulin resistance [10]. Previous studies have 
found a positive association between TyG index and the 
risk of various metabolic and atherosclerotic cardiovas-
cular diseases [11, 12]. However, few studies have been 
conducted to investigate the association between TyG 
index and the risk of incident HF, and whether the asso-
ciation is causal remains undetermined.

Mendelian randomization (MR) makes use of genetic 
variants as instrumental variables (IVs) to generate causal 
estimates of the long-term effects of risk factors on out-
comes [13]. MR analysis can overcome the limitations 
of residual confounding and reverse causation in con-
ventional observational studies [13, 14]. With the devel-
opment of genome-wide association studies (GWAS), 
MR is highly suited to investigate the causal association 
between TyG index and HF [15, 16].

As such, the present study aimed to assess the associa-
tion between the TyG index and the risk of incident HF, 
as well as using a two-sample MR study to determine 
whether such associations were causal in nature.

Methods
Study design and population
Study subjects were identified from two Chinese studies, 
the Kailuan cohort in northern China and a territory-
wide cohort in Hong Kong. The protocol for this study 
was in accordance with the guidelines of the Helsinki 
Declaration and this study was approved by the Ethics 
Committee at the Kailuan General Hospital and the Insti-
tutional Review Board of the University of Hong Kong / 
Hospital Authority Hong Kong West Cluster.

The Kailuan Study is a prospective cohort that based on 
a community in the Tangshan City. Details of the study 
has been published elsewhere [17]. In brief, a total of 
101,510 subjects (aged 18–98 years; 81,110 males) were 
enrolled in the Kailuan Study at baseline (2006–2007), 
and received an interview of standardized questionnaires 
and clinical examinations at 11 hospitals responsible for 
health care of the community. The subjects were then fol-
lowed up with repeated questionnaires, clinical and lab-
oratory examinations every two years. All subjects gave 
informed consent to their enrolment in this study. Sub-
jects with prevalent cancer and cardiovascular diseases, 
including HF, atrial fibrillation (AF), myocardial infarc-
tion, and ischemic stroke were excluded, as well as those 
with missing baseline levels of triglyceride (TG) or fasting 
blood glucose (FBG).

Data for the Hong Kong cohort were extracted retro-
spectively from the Clinical Data Analysis and Reporting 
System (CDARS), an administrative electronic medical 
records database that records the basic demographics, 
diagnoses, selected procedures, medication prescrip-
tions, and selected laboratory measurements of all 
patients that attended public healthcare institutions in 
Hong Kong which serve an estimated 90% of the popu-
lation [18]. Diagnoses in CDARS were recorded using 
International Classification of Diseases, Ninth revision 
(ICD-9) codes regardless of the time of data entry, as 
ICD-10 has not been implemented in CDARS to date. 
The ICD-9 codes used for identifying comorbid condi-
tions and the outcome (HF) were summarized in Table 
S1. CDARS has been extensively used in prior stud-
ies and has been shown to have good diagnostic coding 
accuracy [19–22]. As only retrospective, deidentified data 
were used, the requirement for individual patient con-
sent has been waived. For this study, adult patients (18 
years old or above) attending a family medicine clinic 
in Hong Kong during the years 2000–2003 with at least 
one set of paired FBG and fasting TG levels at baseline 

Conclusion A higher TyG index is an independent and causal risk factor for incident HF in the general population.

Clinical Trial Registration  URL: https://www.chictr.org.cn; Unique identifier: ChiCTR-TNRC-11,001,489.
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were included. Patients with a history of ischemic heart 
disease, stroke, HF, AF, or cancer were excluded, as well 
as those who were pregnant at the time of inclusion, and 
those with missing baseline low-density lipoprotein cho-
lesterol (LDL-C), high-density lipoprotein cholesterol 
(HDL-C), and total cholesterol levels.

Data collection and definitions
The data collected and definitions used in this study are 
detailed in Supplementary Methods [17, 23, 24]. The 
TyG index was calculated using the following formula, ln 
[fasting TG (mg/dl)×FBG (mg/dl) / 2] [25].

Outcomes and follow-up
In the Kailuan cohort, all subjects were followed from 
the baseline examination until the date of onset of HF, 
date of death, or end of follow-up (December 31st, 2019), 
whichever came first. HF was primarily diagnosed by 
experienced cardiologists in accordance with the guide-
lines of the European Society of Cardiology [26]. Cases 
of incident HF were supplemented by information from 
the Municipal Social Insurance Institutions, hospital dis-
charge register, and death certificates.

In the Hong Kong cohort, all patients were followed up 
from inclusion until the first recorded diagnosis of HF, 
death, or the end of follow-up (December 31st, 2019), 
whichever came first. HF events of both hospitalized and 
outpatient episodes were identified using ICD-9 codes as 
summarized in Table S1.

Two-sample MR analysis
Mendelian randomization is built upon three main 
assumptions [27]. First, single-nucleotide polymorphisms 
(SNPs) selected as instrumental variables should be 
robustly associated with the exposure, here as TyG index. 
Second, the genetic instruments should not be related to 
factors that confound the exposure-outcome association. 
Third, genetic variants should affect outcome (HF) only 
through the exposure (TyG index).

TyG index-associated variants were retrieved from a 
previous GWAS based on the UK Biobank cohort [16]. 
In brief, the identified GWAS included 273,368 sub-
jects with genetic data who were aged 40–69 and free 
from diabetes mellitus and lipid metabolism disorders. 
The effects of the instrumental SNPs on TyG index, as a 
continuous variable, were acquired at the genome-wide 
level of significance (P < 5 × 10− 8) by using linear regres-
sion adjusted for age, sex, and the top 5 genetic principal 
components to control population stratification. These 
SNPs were further pruned by linkage disequilibrium with 
R2 < 0.01 and those that were significantly associated with 
TG or glucose were also excluded. In total, 192 IVs were 
selected for TyG index initially. Summary statistics data 
for the associations of TyG index-associated SNPs with 

HF were extracted from the published GWAS performed 
by the Heart Failure Molecular Epidemiology for Thera-
peutic Targets (HERMES) Consortium on 47,309 cases 
and 930,014 controls of European ancestry [28]. HF cases 
from 26 cohorts of the HERMES Consortium were iden-
tified based on the clinical diagnosis of HF of any etiol-
ogy with no specific criteria for left ventricular ejection 
fraction. Details of subject selection were published else-
where [28].

Statistical analysis
Continuous variables were presented as mean ± standard 
deviation (SD) or median with interquartile range (IQR) 
depending on their distribution. Categorical variables 
were presented as frequencies and percentages.

Kaplan-Meier curves were used to visualize the cumu-
lative incidence of HF across quartiles of the TyG index. 
The association between baseline TyG index and the risk 
of incident HF was analyzed using the Cox proportional 
hazards model, with hazard ratios (HR) with 95% confi-
dence intervals (CI) as the summary statistics. The Cox 
regression was performed with a staged approach, as 
detailed in Supplementary Methods. The association 
between the risks of HF and the observed spectrum of 
TyG index was also modelled and visualized using frac-
tional polynomial curves with full multivariable adjust-
ments. Furthermore, competing risk regression using the 
Fine and Gray sub-distribution model was performed to 
address the potentially confounding issue of competing 
risk, with death from any cause as the competing event. 
Sub-hazard ratios (SHR) with 95% CI were used as the 
summary statistics. Sensitivity analyses were conducted 
by excluding subjects with less than two-year follow-up 
time, and, separately, those with medications at baseline.

A priori subgroup analyses were performed for age 
(< 65 vs. ≥ 65), gender (male vs. female), diabetes (yes vs. 
no), hypertension (yes vs. no), dyslipidemia (yes vs. no) 
for both cohorts, and, for the Kailuan cohort, for obesity 
(yes vs. no), and hs-CRP level (< 1 mg/dl vs. ≥ 1 mg/dl).

To combine the results from the two cohorts, we 
extracted hazard ratios from the fully adjusted model 
and performed a meta-analysis using the inverse variance 
method with random effects to estimate the association 
between TyG index, both as categorical and continuous 
variables, and the risk of incident HF.

In the MR analysis, the summary exposure and out-
come data were first harmonized, and SNPs significantly 
associated with incident HF were excluded (P < 5 × 10− 8). 
Causal effects of TyG index on HF were estimated by 
the inverse-variance weighted (IVW) method. Weighted 
median, MR-Egger, and pleiotropy residual sum and out-
lier (MR-PRESSO) methods were used for supplemen-
tary analyses. Directional pleiotropy was assessed by 



Page 4 of 12Li et al. Cardiovascular Diabetology          (2022) 21:229 

MR-Egger intercepts and heterogeneity among genetic 
variants was evaluated by Cochran’s Q test.

To test the validity of causal effects estimates, several 
sensitivity analyses were conducted. First, MR analysis 
were conducted in SNPs pruned by linkage disequilib-
rium with R2 < 0.001. Second, multivariable MR (MVMR) 
using the IVW method was conducted to further inves-
tigate the direct causal effect of TyG index on HF after 
adjusting for confounders including body mass index 
(BMI) [29], systolic blood pressure (SBP) [30], diastolic 
blood pressure (DBP) [30], LDL-c [31], HDL-c [31], and 
DM [32]. An additional sensitivity analysis was per-
formed by excluding any SNP significantly associated 
with these confounders (P < 5 × 10− 8).

All statistical analyses for the Kailuan and Hong Kong 
cohorts were conducted using SAS version 9.4 (SAS 
Institute, Inc., Cary, NC), Stata 16.1 software (Stata-
Corp, College Station, TX), and/or RevMan (Version 5.1; 
Cochrane Collaboration, Oxford, UK). The MR analyses 
were performed by the TwoSampleMR, MR-PRESSO 

and MVMR packages with R version 4.0.2. All p values 
were two-sided, with p < 0.05 considered statistically 
significant.

Results
Of the 101,510 subjects who took part in the Kailuan 
study, 95,996 subjects were analyzed after applying the 
exclusion criteria (Figure S1). For the Hong Kong cohort, 
24,338 patients were identified for inclusion, and 19,345 
patients were analyzed after applying the exclusion crite-
ria (Figure S2). Tables 1 and 2 show the baseline charac-
teristics of subjects according to the baseline TyG index 
quartiles of two cohorts.

In the Kailuan cohort, there were 2,726 cases (2.8%) 
of incident HF over a mean follow-up of 12.3 ± 2.2 years, 
with an overall incidence rate of 2.3 (95% CI 2.2–2.4) 
cases per 1000 person years. In the Hong Kong cohort, 
there were 1,709 cases (7.0%) of incident HF over a mean 
follow-up of 16.2 ± 4.3 years, with an overall incidence 
rate of 5.5 (95% CI 5.3–5.8) cases per 1000 person years. 

Table 1 The baseline characteristics of subjects in the Kailuan Cohort
TyG index

Characteristics Total Q1 Q2 Q3 Q4

3.60–8.18 8.19–8.57 8.58–9.05 9.06–12.51

Subjects (n) 95,996 23,997 24,000 24,001 23,998

TyG index 8.65 ± 0.69 7.85 ± 0.27 8.38 ± 0.11 8.79 ± 0.14 9.58 ± 0.46

Age, years 51.4 ± 12.5 50.2 ± 13.7 51.4 ± 12.7 52.1 ± 12.2 52.0 ± 11.4

Male, n (%) 76,364(79.6) 17,655(73.6) 18,994(79.1) 19,501(81.3) 20,214(84.2)

Height (cm) 167.4 ± 7.0 166.7 ± 7.0 167.5 ± 7.0 167.6 ± 7.0 167.9 ± 6.9

BMI (kg/m2) 25.0 ± 3.5 23.4 ± 3.2 24.6 ± 3.3 25.6 ± 3.3 26.4 ± 3.4

Completed high school, n (%) 18,746(19.5) 5673(23.6) 4483(18.7) 4448(18.5) 4142(17.3)

Income ≥ 800¥, n (%) 13,133(13.7) 3563(14.9) 3093(12.9) 3234(13.5) 3243(13.5)

Daily Smoker, n (%) 28,675(29.9) 6902(28.8) 6741(28.1) 7173(29.9) 7859(32.8)

Daily alcohol user, n (%) 16,725(17.4) 3891(16.2) 3834(16.0) 4125(17.2) 4875(20.3)

Activity physical activity, n (%) 13,935(14.5) 3654(15.2) 3356(14.0) 3535(14.7) 3390(14.1)

Systolic BP, mmHg 131 ± 21 124 ± 20 129 ± 20 132 ± 21 136 ± 21

Diastolic BP, mmHg 83 ± 12 80 ± 11 83 ± 11 85 ± 1 87 ± 12

FBG, mmol/L 5.47 ± 1.67 4.80 ± 0.68 5.09 ± 0.76 5.44 ± 1.11 6.54 ± 2.66

TC, mg/dL 190.9 ± 44.1 179.3 ± 35.6 190.2 ± 37.3 197.9 ± 39.0 196.4 ± 58.1

LDL-c, mg/dL 90.6 ± 35.2 84.3 ± 35.8 92.2 ± 33.3 94.7 ± 33.99 91.2 ± 36.7

HDL-c, mg/dL 59.8 ± 15.5 60.5 ± 15.7 60.3 ± 14.8 59.3 ± 15.1 59.0 ± 16.3

TG, mg/dL 112.4
(78.8-170.8)

62.0
(51.3–72.6)

97.4
(86.7–108.0)

137.2
(120.4-158.4)

245.1
(192.9–
346.0)

hs-CRP, mg/dl 0.80
(0.30–2.16)

0.60
(0.21–1.84)

0.72
(0.29–1.99)

0.88
(0.33–2.16)

1.02
(0.40–2.61)

eGFR, mL/min/1.73m2 82.3 ± 25.7 85.8 ± 26.8 81.8 ± 25.4 81.4 ± 22.8 80.5 ± 27.2

Diabetes Mellitus, n (%) 8408(8.8) 223(0.9) 542(2.3) 1699(7.1) 5944(24.8)

Hypertension, n (%) 4,1072(42.8) 6847(28.5) 9651(40.2) 11,316(47.2) 13,258(55.3)

Anti-hypertensive drugs,
n (%)

9453(9.9) 1440(6.0) 1915(8.0) 2714(11.3) 3384(14.1)

Lipid-lowering drugs, n (%) 709(0.7) 81(0.3) 130(0.5) 168(0.7) 330(1.4)

Diabetes drugs, n (%) 2048(2.1) 121(0.5) 209(0.9) 442(1.8) 1273(5.3)
Abbreviations: BMI: body mass index; BP: blood pressure; FBG: fasting blood glucose; TC: total cholesterol; LDL-c: low density lipoprotein cholesterol; HDL-c: low 
density lipoprotein cholesterol; TG: triglyceride; eGFR: estimated glomerular filtration rate; hs-CRP: high sensitivity C-reactive protein
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Over the study duration, 10,825 subjects (11.3%) in the 
Kailuan cohort died (9,985 (10.1%) without develop-
ing HF), while 6,372 patients (32.9%) in the Hong Kong 
cohort died (4,996 (25.8%) without developing HF).

Associations between the TyG index and the risk of 
incident HF
Tables  3 and 4 show the associations between the TyG 
index, assessed both as a categorial and continuous 
variable, with the respective risks of incident HF in the 
Kailuan and Hong Kong cohorts. The cumulative inci-
dence of incident HF for the Kailuan and the Hong Kong 
cohort is shown in Fig.  1A and 1B, respectively. After 
fully adjusting for potential confounders, patients in the 
highest quartile of the TyG index had significantly higher 
risks of incident HF than those in the lowest quartile in 
both the Kailuan (HR 1.23 (95% CI 1.09–1.39), P < 0.001) 
and Hong Kong (HR 1.21 (95% CI 1.04–1.40), P = 0.007) 
cohorts. Similarly, every unit increment in the TyG index 
was associated with a 17% and a 13% increase in the 
risk of HF in the Kailuan (HR 1.17 (95% CI 1.10–1.24), 
P < 0.001) and Hong Kong (HR 1.13 (95% CI 1.05–1.22), 
P < 0.001) cohorts, respectively. Fractional polynomial 
curves with full multivariable adjustment (Figure S3) 
showed a possible threshold effect in the prognostic value 
of the TyG index, with a lower TyG index showing no 
significant association with the risk of incident HF, and 

a higher TyG index showing a grossly linear relationship 
with the said risk. This was consistent with the multi-
variable Cox regression analysis as shown in Tables  3 
and 4 with TyG index analyzed as quartiles. Competing 
risk regression using the Fine and Gray sub-distribu-
tion model with death from any cause as the competing 
event also showed positive associations between a higher 
TyG index and a high risk of incident HF (Tables 3 and 
4). Sensitivity analyses produced consistent and similar 
results (Tables 3 and 4).

Results of subgroup analyses are shown in Fig. 2A and 
Fig. 2B for the Kailuan and Hong Kong cohorts, respec-
tively. Generally, the TyG index, analyzed as a continu-
ous variable, was positively associated with the risk of HF 
across various subgroups. There was significant interac-
tion between gender and the TyG index in the Kailuan 
cohort (P for interaction = 0.02), but not in the Hong 
Kong cohort (P for interaction = 0.11). The association 
between TyG index and the risk of incident HF was more 
prominent in female subjects than in male subjects in 
both cohorts [HR 1.21 (95% CI 1.02–1.47) for female vs. 
1.15 (95% CI 1.08–1.23) for male in the Kailuan cohort, 
and 1.22 (95% CI 1.10–1.64) vs. 1.05 (95% CI 0.94–1.17) 
in the Hong Kong cohort].

A random-effect meta-analysis combining the results 
from the two cohorts showed that the risk of incident HF 
of subjects in the highest quartile of the TyG index was 

Table 2 The baseline characteristics of subjects in the cohort from Hong Kong
TyG index

Characteristics Total Q1 Q2 Q3 Q4

4.78–6.89 6.90–7.31 7.32–7.80 7.81–11.38

Subjects (n) 19,345 4,861 4,859 4,812 4,813

TyG index 7.36 ± 0.68 6.54 ± 0.27 7.10 ± 0.12 7.54 ± 0.14 8.26 ± 0.42

Age, years 60.1 ± 12.9 58.1 ± 13.9 60.6 ± 12.9 60.6 ± 12.3 61.3 ± 12.2

Male, n (%) 7738 (40.0) 1780 (36.6) 1971 (40.6) 1935 (40.2) 2052 (42.6)

Systolic BP, mmHg 139 ± 21 136 ± 21 139 ± 20 140 ± 20 142 ± 20

Diastolic BP, mmHg 76 ± 11 75 ± 12 76 ± 11 77 ± 11 77 ± 11

FBG, mmol/L 6.79 ± 3.18 5.35 ± 0.97 5.96 ± 1.41 6.72 ± 2.19 9.16 ± 4.94

TC, mg/dL 208.4 ± 42.0 197.0 ± 39.8 207.4 ± 40.9 212.4 ± 41.1 217.2 ± 43.5

LDL-c, mg/dL 124.7 ± 37.4 119.6 ± 35.5 128.3 ± 37.2 128.5 ± 37.3 122.4 ± 38.9

HDL-c, mg/dL 52.6 ± 14.6 61.0 ± 15.7 53.9 ± 14.0 49.5 ± 12.1 46.0 ± 11.7

TG, mg/dL 124.0
(88.6-179.8)

743.5
(60.2–88.6)

115.1
(98.3–132.0)

160.3
(127.5-189.5)

221.4
(159.4-292.3)

Dyslipidemia, n (%) 9099 (47.0) 1930 (39.7) 2273 (46.8) 2446 (50.8) 2450 (50.9)

Diabetes Mellitus, n (%) 6524(33.7) 559 (11.5) 1138 (23.4) 1816 (37.7) 3011 (62.6)

Hypertension, n (%) 11,809 (61.0) 2591 (53.3) 2974 (61.2) 3037 (63.1) 3207 (66.6)

Chronic kidney disease, 
n (%)

2930 (15.2) 543 (11.2) 730 (15.0) 744 (15.5) 913 (19.0)

Anti-hypertensive drugs, 
n (%)

3834 (19.8) 755 (15.5) 990 (20.4) 1011 (21.0) 1078 (22.4)

Lipid-lowering drugs, 
n (%)

1586 (8.2) 303 (6.2) 373 (7.7) 419 (8.7) 491 (10.2)

Diabetes drugs, n (%) 995 (5.1) 110 (2.3) 194 (4.0) 246 (5.1) 445 (9.3)

Antiplatelets, n (%) 814 (4.2) 159 (3.3) 191 (3.9) 216 (4.5) 248 (5.2)
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22% higher (95% CI 11% − 34%, P < 0.0001; Fig. 3A) than 
those in the lowest quartile, with every unit increment 
of the TyG index being associated with a 15% increase in 
the risk of incident HF (95% CI 10% − 21%, P < 0.00001; 
Fig. 3B). Similarly, subjects in the highest quartile of the 
TyG index had a 25% (95% CI 13% − 37%) increase in the 
sub-hazard of incident HF.

Two-sample MR analysis
The associations between genetically determined TyG 
index and the risk of incident HF as estimated by two-
sample MR are presented in Fig.  4. Analysis using the 
IVW method demonstrated that genetic predisposition 
to increased TyG index was significantly associated with 
an increased risk of incident HF (OR 1.27, 95% CI 1.15–
1.40, P < 0.001). The Cochran’s Q statistic indicated signif-
icant heterogeneity across SNPs, while no indication of 
directional pleiotropy was found by MR-Egger intercept 
(Table S2). The association remained consistent when 
using complementary methods for analysis, including 
weighted median, MR-Egger and MRPRESSO (Fig. 4).

To verify the causal effect of TyG index on HF, we per-
formed multivariable MR analysis by adjusting for HF 
risk factors, including BMI, blood pressure, and lipids. 
The association remained stable after adjusting for single 
risk factors (Table S3) and in a fully adjusted model (OR 
1.20, 95% CI 1.02–1.41, P = 0.03; Fig.  4). Furthermore, 
results of the sensitivity analysis, in which 32 SNPs with 

potential pleiotropy were excluded, confirmed the posi-
tive association between genetically determined TyG 
index and HF risk (OR 1.19, 95% CI 1.05–1.35, P = 0.01).

Discussion
Utilizing observational data from two large Chinese 
cohorts and a two-sample MR analysis based on public 
GWAS datasets, this study demonstrated that a high TyG 
index was an independent and causal risk factor for inci-
dent HF in the general population.

Previous studies have found independent associa-
tions between TyG index and risks of atherosclerotic 
cardiovascular diseases, including myocardial infarction 
and ischemic stroke [25, 33]. In a recent analysis of data 
from the Atherosclerosis Risk in Communities (ARIC) 
study, Huang et al. also reported an association between 
higher TyG index and higher risk of incident HF in an 
American population, with every standard deviation’s 
increase in TyG index (corresponding to a TyG index 
of 0.6) associated with a 15% increase in risk [34]. Our 
study confirmed these findings in two larger cohorts 
from distinct geographical regions in China. Unlike the 
ARIC study which was restricted to subjects between the 
ages of 45–64 years old, our study included adult patients 
across the full age range. As such, our study more closely 
reflects real-life practice, and our findings are thus more 
directly generalizable.

Table 3 Association between baseline TyG and incident heart failure in the Kailuan cohort
Q1 Q2 Q3 Q4 P for trend Per 1-unit 

increment
P value

Number of patients 23,997 24,000 24,001 23,998

HF cases 497 576 729 924

Persons 23,997 24,000 24,001 23,998

Person-years 297,098 295,908 294,857 292,552

HF incidence 1 1.67(1.53–1.83) 1.95(1.79–2.11) 2.47(2.30–2.66) 3.16(2.96–3.37)

Model 1 2 1 1.16(1.03–1.31) 1.48(1.32–1.66) 1.90(1.70–2.11) < 0.001 1.44(1.37–1.51) < 0.001

Model 2 3 1 1.12(1.00-1.27) 1.41(1.26–1.58) 1.90(1.70–2.12) < 0.001 1.47(1.40–1.55) < 0.001

Model 3 4 1 1.00(0.88–1.12) 1.12(1.00-1.26) 1.23(1.09–1.39) < 0.001 1.17(1.10–1.24) < 0.001

Sensitivity analysis

Sensitivity analysis 1 5 1 1.00(0.88–1.13) 1.14(1.01–1.28) 1.23(1.10–1.41) < 0.001 1.18(1.10–1.25) < 0.001

Sensitivity analysis 2 6 1 0.97(0.84–1.11) 1.11(0.98–1.27) 1.17(1.02–1.34) 0.006 1.13(1.06–1.22) < 0.001

Competing risk 
regression 7

1 1.01(0.90–1.14) 1.14(1.02–1.29) 1.25(1.10–1.41) < 0.001 1.18(1.10–1.25) < 0.001

1 HF incidence; The incidence rates per 1000 person years with the corresponding 95% confidence intervals are shown
2 Model 1: Unadjusted. The hazard ratios with the corresponding 95% confidence intervals are shown
3 Model 2: Age-sex adjusted. The hazard ratios with the corresponding 95% confidence intervals are shown
4 Model 3: Adjusted for age, gender, education, income, physical activity, smoking status, alcohol intake, diabetes, LDL-c, HDL-c, SBP, DBP, BMI, eGFR, hs-CRP, anti-
hypertensive drugs, anti-diabetes drugs, and lipid-lowering drugs. The hazard ratios with the corresponding 95% confidence intervals are shown
5 Sensitivity analysis 1: exclude follow-up time less than 2 years, remained 95,275 subjects with 2,497 HF cases. The hazard ratios with the corresponding 95% 
confidence intervals are shown
6 Sensitivity analysis 2: exclude subjects with medication at baseline (anti-hypertension drugs, lipid lower drugs, anti-diabetes drugs), remained 85,118 subjects with 
2,118 HF cases. The hazard ratios with the corresponding 95% confidence intervals are shown
7 Competing risk regression: sub-hazard ratios with the corresponding 95% confidence intervals are shown
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Importantly, utilizing MR of GWAS data, we demon-
strated that the association between TyG and HF was 
causal by nature. The magnitude of increase in risk per 
unit increment of TyG index were 15% (95% CI: 10-21%) 
in real-world cohorts and 27% (95% CI: 15-40%) in MR 
analysis. Although the exact underlying mechanism 
for the association between TyG index and HF remains 
to be confirmed by further molecular studies, the well-
established relationship between TyG index and insulin 
resistance suggests that insulin resistance may at least 

be an important driver of such association [10]. This was 
further reinforced by the results from the Kailuan cohort 
showing that the association between TyG index and 
HF was independent of chronic inflammation, as well as 
previous studies observing associations between insulin 
resistance and higher risks of incident HF independent 
of myocardial ischaemia [35–37]. Insulin resistance may 
lead to excessive circulating free fatty acids and triglyc-
erides, which induces cardiac lipotoxicity by generating 
toxic lipid intermediates, and decreases cardiac efficiency 

Table 4 Association between baseline TyG index and incident heart failure in the cohort from Hong Kong
Q1 Q2 Q3 Q4 P for trend Per 1-unit 

increment
P value

Number of patients 4,861 4,859 4,812 4,813

HF cases 342 404 454 509

Persons 4861 4859 4812 4813

Person-years 79,353 77,644 77,335 75,360

HF incidence 1 4.31(3.88–4.79) 5.20(4.72–5.74) 5.87(5.34–6.42) 6.75(6.19–7.37)

Model 1 2 1 1.21(1.05–1.40) 1.36(1.19–1.57) 1.58(1.38–1.82) < 0.001 1.30(1.22–1.39) < 0.001

Model 2 3 1 1.09(0.94–1.26) 1.23(1.07–1.42) 1.39(1.21–1.59) < 0.001 1.23(1.14–1.31) < 0.001

Model 3 4 1 1.07(0.92–1.23) 1.17(1.01–1.35) 1.21(1.04–1.40) 0.007 1.13(1.05–1.22) 0.001

Sensitivity analysis

Sensitivity analysis 1 5 1 1.07(0.92–1.23) 1.17(1.01–1.35) 1.22(1.05–1.41) 0.005 1.14(1.05–1.23) 0.001

Sensitivity analysis 2 6 1 1.16(0.98–1.37) 1.22(1.03–1.45) 1.29(1.08–1.53) 0.005 1.16(1.06–1.27) 0.001

Competing risk regres-
sion 7

1 1.06(0.91–1.22) 1.21(1.04–1.40) 1.24(1.07–1.44) 0.001 1.15(1.06–1.24) < 0.001

1 HF incidence; The incidence rates per 1000 person years with the corresponding 95% confidence intervals are shown
2 Model 1: Unadjusted. The hazard ratios with the corresponding 95% confidence intervals are shown
3 Model 2: Age-sex adjusted. The hazard ratios with the corresponding 95% confidence intervals are shown
4 Model 3: Adjusted for age, sex, hypertension, diabetes mellitus, chronic kidney disease, dyslipidemia, antihypertensives, anti-diabetic drugs, antiplatelets, lipid-
lowering drugs. The hazard ratios with the corresponding 95% confidence intervals are shown
5 Sensitivity 1: exclude follow-up time less than 2 years, remained 19,227 subjects with 1,709 HF cases. The hazard ratios with the corresponding 95% confidence 
intervals are shown
6 Sensitivity 2: exclude those with medications at baseline, remained 14,842 subjects with 1,223 HF cases. The hazard ratios with the corresponding 95% confidence 
intervals are shown
7 Competing risk regression: sub-hazard ratios with the corresponding 95% confidence intervals are shown

Fig. 1 Kaplan-Meier curve of the cumulative incidence of incident heart failure stratifying by quartiles of the triglyceride-glucose index. (A) Kailuan 
cohort and (B) Hong Kong cohort
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Fig. 3 Forest plots for the meta-analysis of the association between TyG index with HF risk. (A) TyG index analyzed as a categorical variable. (B) TyG index 
analyzed as a continuous variable

 

Fig. 2 Subgroup analysis of the association between TyG index and incident HF for the (A) Kailuan cohort and (B) Hong Kong cohort
Abbreviations: TyG: triglyceride-glucose; HR: hazard ratio; CI: confidence interval
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by increasing fatty acid oxidation [38, 39]. Insulin resis-
tance is also associated with disturbances of the systemic 
metabolic and inflammatory milieu, including increased 
concentrations of proinflammatory cytokines, adipo-
kines, and catecholamines, which may trigger low-grade 
inflammation and chronic hypercatecholaminemia that 
result in detrimental effects on cardiac function [40]. 
Furthermore, insulin resistance is involved in the mal-
adaptive activation of the renin-angiotensin-aldoste-
rone system, with chronic hyperinsulinaemia inducing 
increased release of angiotensinogen from adipose tissue 
and upregulation of angiotensin II receptor expression, 
eventually resulting in adverse cardiac remodeling and 
dysfunction [41]. Nonetheless, the mechanisms between 
insulin resistance and HF are incompletely understood to 
date, and remain an important area of further research.

Another major finding of the present study is that the 
association between TyG index and the risk of HF was 
stronger in females than in males. Between-gender differ-
ences are common in cardiovascular medicine. Previous 
studies have shown that women with disorders of glucose 
metabolism have a greater risk of coronary heart disease 
than men [33, 42]. HF caused by obesity, diabetes, or 
metabolic syndrome was also found to be more common 
in women [43]. These observations may be mediated by 
between-gender differences in molecular mechanisms, 
particularly those in hormonal axes, which not only 
influence glucose and lipid metabolism, but also cardiac 
function. Females are known to be less likely than males 
to develop insulin resistance [44] but are at higher risk 
of diabetic cardiomyopathy [45], implying that females 
may be more susceptible to cardiac damage induced by 

insulin resistance. Gender differences in nitric oxide 
synthase (NOS) activity and signaling, which are criti-
cal in metabolic regulation and in modulating responses 
to insulin resistance, are thought to be central to these 
observations [46]. The higher baseline levels of NOS in 
females predisposes to higher levels of uncoupled NOS 
on exposure to oxidative stress, which exacerbates the 
effects of insulin resistance, such as myocardial fibrosis 
and hypertrophy [46]. Additionally, considering that the 
mean age of subjects in this study implied that the female 
subjects were mostly postmenopausal, the postmeno-
pausal decline in the protective effects of estrogen may 
contribute to gender differences in the susceptibility to 
insulin resistance-induced cardiac damage [43]. Notwith-
standing the existing evidence as discussed above, further 
studies exploring the gender differences in susceptibility 
to insulin resistance-induced cardiac damage should pro-
vide important insights and better understanding of dia-
betic cardiomyopathy.

Having derived consistent findings from two geograph-
ically distinct regions in China, our results suggest that 
the TyG index, as a surrogate marker of insulin resis-
tance, may be widely applicable and prognostically use-
ful regardless of geographical region. As subjects with 
prevalent major cardiovascular diseases were excluded 
from the present study, the analyzed cohorts had rela-
tively low cardiovascular risks. Our results supported 
the TyG index as a potentially viable and effective tool 
for cardiovascular risk stratification in the general pop-
ulation. Of note, insulin resistance in many previous 
studies was measured by the Homeostatic Model Assess-
ment for Insulin Resistance (HOMA-IR) which requires 

Fig. 4 Mendelian randomization (MR) association between genetically determined TyG index and HF. Sensitivity analysis 1: MR analysis through IVW 
method in SNPs pruned by linkage disequilibrium with R2 < 0.001 Sensitivity analysis 2: Multivariable MR through IVW method after adjusting for cofound-
ers including BMI, SBP, DBP, LDL-c, HDL-c, and DM. Sensitivity analysis 3: MR analysis through IVW method after excluding any SNPs significantly associated 
with those confounders, including BMI, SBP, DBP, LDL-c, HDL-c, and DM.
Abbreviations: SNPs: single-nucleotide polymorphisms; OR: odds ratio; IVW: inverse-variance weighted

 



Page 10 of 12Li et al. Cardiovascular Diabetology          (2022) 21:229 

measurements of fasting insulin and glucose [35, 36]. 
However, measuring insulin levels is expensive, and the 
HOMA-IR has been mostly confined to research uses 
with low clinical utilization. In contrast, the TyG index is 
simple to measure, has been validated against the eugly-
cemic-hyperinsulinemic clamp test which is considered 
the gold standard for measuring insulin resistance [10], 
and may outperform the HOMA-IR in identifying insulin 
resistance [47]. It has also been shown to be excellent at 
detecting insulin resistance in non-diabetic patients [48], 
which is important as insulin resistance and its associ-
ated cardiovascular damage precedes overt type II diabe-
tes mellitus [49]. The TyG index may therefore facilitate 
recognition of patients at elevated risk of incident HF, for 
which efficacious measures for primary prevention exist 
[4].

Strengths and limitations
The strengths of our study included the large sample size, 
long follow-up time, and having demonstrated reproduc-
ible results across two independent observational cohorts 
and MR analysis. Our findings were further strength-
ened by multiple subgroup and sensitivity analyses yield-
ing largely consistent results. To the best of the authors’ 
knowledge, this was one of the first studies demonstrat-
ing causality between higher TyG index and higher risk 
of incident HF. Nonetheless, some limitations must be 
noted. First, we were unable to compare the predictive 
power of different methods for assessing insulin resis-
tance in our observational study, since fasting insulin 
levels were unavailable for most subjects. Second, inher-
ent to all observational studies, there may be residual 
or unmeasured confounders that we were not able to 
address. Nonetheless, we have included multiple impor-
tant risk factors for incident HF in the multivariable 
regression models, and the numerous sensitivity analyses 
yielded consistent results which reinforced the validity 
of our findings. Third, the MR analysis was restricted to 
patients of European descent to reduce bias from popula-
tion stratification, which may limit extrapolation of our 
MR results to other populations. Nevertheless, given that 
associations between TyG index and the risk of incident 
HF observed in a recent report in an American cohort 
(the ARIC study) were comparable to our findings as 
observed in Chinese cohorts, the causality established by 
our MR analysis is likely true in Chinese population as 
well. Fourth, no information was available about the sub-
type of incident HF. Given the different metabolic mech-
anisms contributing to the pathogenesis of different types 
of HF [50], further research in this regard is warranted. 
Fifth, diagnoses of the Hong Kong cohort were identified 
using ICD-9 codes and could not be individually adjudi-
cated due to the retrospective, deidentified nature of the 
database, as well as the large sample size. Regardless, all 

diagnostic codes were entered by treating clinicians, who 
were completely independent of the authors. CDARS has 
also been shown to have good coding accuracy, specifi-
cally for cardiovascular outcomes [51].

Conclusion
As observed from two large, geographically distinct Chi-
nese cohorts, a higher TyG index was independently 
associated with higher risk of incident HF. MR analy-
sis demonstrated that the association was likely causal 
in nature. Further studies are warranted to confirm our 
findings and fully elucidate the underlying biological 
mechanisms.
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