179 research outputs found

    Gap Renormalization in Dirty Anisotropic Superconductors: Implications for the Order Parameter of the Cuprates

    Full text link
    We contrast the effects of non-magnetic impurities on the properties of superconductors having a \dw\ order parameter, and a highly anisotropic s-wave (ASW) gap with the same nodal structure. The non-vanishing, impurity induced, off-diagonal self-energy in the ASW state is shown to gap out the low energy excitations present in the clean system, leading to a qualitatively different impurity response of the single particle density of states compared to the \dw\ state. We discuss how this behaviour can be employed to distinguish one state from the other by an analysis of high-resolution angle-resolved photoemission spectra.Comment: 12 pages, uuencoded Postscrip

    Probing the non-perturbative dynamics of SU(2) vacuum

    Get PDF
    The vacuum dynamics of SU(2) lattice gauge theory is studied by means of a gauge-invariant effective action defined using the lattice Schr\"odinger functional. Numerical simulations are performed both at zero and finite temperature. The vacuum is probed using an external constant Abelian chromomagnetic field. The results suggest that at zero temperature the external field is screened in the continuum limit. On the other hand at finite temperature it seems that confinement is restored by increasing the strength of the applied field.Comment: 29 pages, 10 figures, LaTeX2

    Quantum field effects in coupled atomic and molecular Bose-Einstein condensates

    Full text link
    This paper examines the parameter regimes in which coupled atomic and molecular Bose-Einstein condensates do not obey the Gross-Pitaevskii equation. Stochastic field equations for coupled atomic and molecular condensates are derived using the functional positive-P representation. These equations describe the full quantum state of the coupled condensates and include the commonly used Gross-Pitaevskii equation as the noiseless limit. The model includes all interactions between the particles, background gas losses, two-body losses and the numerical simulations are performed in three dimensions. It is found that it is possible to differentiate the quantum and semiclassical behaviour when the particle density is sufficiently low and the coupling is sufficiently strong.Comment: 4 postscript figure

    A Non-Abelian Variation on the Savvidy Vacuum of the Yang-Mills Gauge Theory

    Full text link
    As a prelude to a truly non-perturbative evaluation of the effective potential in terms of lattice QCD, the one loop effective potential for a non-Abelian gauge configuration is calculated using the background field method. Through a non-trivial correlation between the space and color orientations the new background field avoids the possible coordinate singularity, DetBia=0{\rm Det}B_i^a=0, observed recently by Ken Johnson and his collaborators in their Schr\"{o}dinger functional study of the SU(2) Yang-Mills theory. In addition, since our ansatz generates a constant color magnetic field through the commutator terms rather than derivative terms, many of the technical drawbacks the Savvidy ansatz suffers on a lattice can be avoided. Our one loop study yields qualitatively the same result as that of Savvidy's.Comment: 9 pages, preprint BU-HEP-93-2

    Exact SO(8) Symmetry in the Weakly-Interacting Two-Leg Ladder

    Full text link
    A perturbative renormalization group analysis of interacting electrons on a two-leg ladder reveals that at half-filling any weakly repulsive system scales onto an exactly soluble Gross-Neveu model with a hidden SO(8) symmetry. The half-filled ground state is a Mott insulator with short-range d-wave pair correlations. We extract the exact energies, degeneracies, and quantum numbers of *all* the low energy excited multiplets. One energy (mass) m octets contains Cooper pair, magnon, and density-wave excitations, two more octets contain single-particle excitations, and a mass \sqrt{3}m antisymmetric tensor contains 28 "bound states". Exact single-particle and spin gaps are found for the lightly-doped (d-wave paired one-dimension Bose fluid) system. We also determine the four other robust phases occuring at half-filling for partially attractive interactions. All 5 phases have distinct SO(8) symmetries, but share S.C. Zhang's SO(5) as a common subgroup.Comment: RevTex, 35 pages with 15 figure

    Entangled Stories: The Red Jews in Premodern Yiddish and German Apocalyptic Lore

    Get PDF
    “Far, far away from our areas, somewhere beyond the Mountains of Darkness, on the other side of the Sambatyon River…there lives a nation known as the Red Jews.” The Red Jews are best known from classic Yiddish writing, most notably from Mendele's Kitser masoes Binyomin hashlishi (The Brief Travels of Benjamin the Third). This novel, first published in 1878, represents the initial appearance of the Red Jews in modern Yiddish literature. This comical travelogue describes the adventures of Benjamin, who sets off in search of the legendary Red Jews. But who are these Red Jews or, in Yiddish, di royte yidelekh? The term denotes the Ten Lost Tribes of Israel, the ten tribes that in biblical times had composed the Northern Kingdom of Israel until they were exiled by the Assyrians in the eighth century BCE. Over time, the myth of their return emerged, and they were said to live in an uncharted location beyond the mysterious Sambatyon River, where they would remain until the Messiah's arrival at the end of time, when they would rejoin the rest of the Jewish people. This article is part of a broader study of the Red Jews in Jewish popular culture from the Middle Ages through modernity. It is partially based on a chapter from my book, Umstrittene Erlöser: Politik, Ideologie und jüdisch-christlicher Messianismus in Deutschland, 1500–1600 (Göttingen: Vandenhoeck & Ruprecht, 2011). Several postdoctoral fellowships have generously supported my research on the Red Jews: a Dr. Meyer-Struckmann-Fellowship of the German Academic Foundation, a Harry Starr Fellowship in Judaica/Alan M. Stroock Fellowship for Advanced Research in Judaica at Harvard University, a research fellowship from the Heinrich Hertz-Foundation, and a YIVO Dina Abramowicz Emerging Scholar Fellowship. I thank the organizers of and participants in the colloquia and conferences where I have presented this material in various forms as well as the editors and anonymous reviewers of AJS Review for their valuable comments and suggestions. I am especially grateful to Jeremy Dauber and Elisheva Carlebach of the Institute for Israel and Jewish Studies at Columbia University, where I was a Visiting Scholar in the fall of 2009, for their generous encouragement to write this article. Sue Oren considerably improved my English. The style employed for Romanization of Yiddish follows YIVO's transliteration standards. Unless otherwise noted, translations from the Yiddish, Hebrew, German, and Latin are my own. Quotations from the Bible follow the JPS translation, and those from the Babylonian Talmud are according to the Hebrew-English edition of the Soncino Talmud by Isidore Epstein

    On the Theory of the Pseudogap Formation in 2D Attracting Fermion Systems

    Full text link
    Two-dimensional system of the fermions with the indirect Einstein phonon-exchange attraction and added local four-fermion interaction is considered. It is shown that in such a system at resulting attraction between particles a new nonsuperconducting phase arises along with the normal and superconducting phases. In this, called "abnormal normal", or pseudogap, phase the absolute value of the order parameter is finite but its phase is a random quantity. It is important that the new phase really exists at low carrier density only, i.e. it shrinks with doping increasing in the case of phonon attraction. The relevance of the results for high-temperature superconductors is speculated. Key words: 2D metal, arbitrary carrier density, normal phase, abnormal normal phase, pseudogap, suderconducting phase, Berezinskii-Kosterlitz-Thouless phase, electron-electron and electron-hole pairingComment: 19 pages, 2 figures (emtex

    Quantum superchemistry: Dynamical quantum effects in coupled atomic and molecular Bose-Einstein condensates

    Get PDF
    We show that in certain parameter regimes there is a macroscopic dynamical breakdown of the Gross-Pitaevskii equation. Stochastic field equations for coupled atomic and molecular condensates are derived using the functional positive-P representation. These equations describe the full quantum state of the coupled condensates and include the commonly used Gross-Pitaevskii equation us the noiseless limit. The full quantum theory includes the spontaneous processes which will become significant when the atomic population is low. The experimental signature of the quantum effects will he the time scale of the revival of the atomic population after a near total conversion to the molecular condensate

    Ensemble Analysis of Angiogenic Growth in Three-Dimensional Microfluidic Cell Cultures

    Get PDF
    We demonstrate ensemble three-dimensional cell cultures and quantitative analysis of angiogenic growth from uniform endothelial monolayers. Our approach combines two key elements: a micro-fluidic assay that enables parallelized angiogenic growth instances subject to common extracellular conditions, and an automated image acquisition and processing scheme enabling high-throughput, unbiased quantification of angiogenic growth. Because of the increased throughput of the assay in comparison to existing three-dimensional morphogenic assays, statistical properties of angiogenic growth can be reliably estimated. We used the assay to evaluate the combined effects of vascular endothelial growth factor (VEGF) and the signaling lipid sphingoshine-1-phosphate (S1P). Our results show the importance of S1P in amplifying the angiogenic response in the presence of VEGF gradients. Furthermore, the application of S1P with VEGF gradients resulted in angiogenic sprouts with higher aspect ratio than S1P with background levels of VEGF, despite reduced total migratory activity. This implies a synergistic effect between the growth factors in promoting angiogenic activity. Finally, the variance in the computed angiogenic metrics (as measured by ensemble standard deviation) was found to increase linearly with the ensemble mean. This finding is consistent with stochastic agent-based mathematical models of angiogenesis that represent angiogenic growth as a series of independent stochastic cell-level decisions
    corecore