242 research outputs found
Porphyrines et tétraazamacrocycles dérivés du DOTA (association de deux ligands pour la chélation de métaux d'intérêt en imagerie médicale multimodale)
Le travail présenté dans ce mémoire avait pour but de synthétiser de nouvelles molécules dont l architecture donne accès à des complexes hétérobimétalliques aux propriétés intéressantes pour l imagerie médicale multimodale. Dans ce manuscrit plusieurs points principaux ont donc été abordés. La première partie de se travail porte sur la synthèse et la caractérisation des ligands. Nous décrivons dans ce manuscrit la synthèse de cinq nouveaux ligands hétérobismacrocycliques basés sur l association d une porphyrine et d un ou de plusieurs dérivés du cyclène. Ces ligands présentent la particularité d être solubles en milieux aqueux. Au cours des synthèses, nous avons ciblé les améliorations à apporter à notre travail et élaboré une nouvelle voie de synthèse qui permet d accéder, en seulement six étapes, à un ligand composé d une porphyrine, d un dérivé du cyclène et d une fonction amine libre qui permettra de greffer le ligand sur un vecteur biologique. La seconde partie de ce manuscrit porte sur l incorporation de centres métalliques dans les ligands synthétisés ainsi que l étude de leur efficacité en tant qu agent de contraste de l IRM. Nous décrivons la synthèse de cinq complexes de gadolinium (III) et de trois complexes hétérobimétalliques associant du gadolinium (III) et du cuivre (II). En effet, le gadolinium est actuellement utilisé dans les agents de contraste de l IRM et un des isotopes du cuivre, le cuivre-64, est utilisé en imagerie PET. Nous décrivons un protocole de mesure de la relaxivité des complexes à haut et à bas champs magnétiques. Cinq complexes présentent des valeurs de relaxivité quatre fois supérieures à celles des agents de contraste commerciaux de l IRM. Le dernier chapitre de ce travail porte sur la synthèse, la caractérisation et les études photophysiques de quatre antennes moléculaires associant des porphyrines et des BODIPY. Nous avons développé deux voies de synthèses originales. La première est basée sur la création de liaisons bore-oxygène en substituant les atomes de fluor portés par l atome de bore des BODIPY. L autre voie de synthèse utilise la réaction de cycloaddition dipolaire d Huisgen. Nous décrivons des études photophysiques qui mettent en évidence des transferts d énergie du BODIPY vers la porphyrine Nous avons mis en évidence le premier exemple de transfert d énergie d une porphyrine vers un BODIPY grâce à un système blue BODIPY étendu couplé à des porphyrines par une réaction de chimie click .The goal of my PhD thesis was to synthesize new molecules, which give access to heterobimetallic complexes with interesting properties for multimodal imaging. In this manuscript, several main points have been studied. The first part of this work concerns the synthesis and characterization of ligands. We describe here the synthesis of five new ligands based on the association of one porphyrin and one or several cyclen derivatives. Those ligands are water-soluble. During the synthesis, we have targeted improvements to our work and developed a new synthetic pathway, which allowed us to obtain one ligand incorporating a porphyrin, a cyclen derivative and a free amine function. This function could be activated to further graft the ligand onto a biological vector. The second part of this manuscript describes the chelation of metallic centers into the ligands and the study of their efficiency as MRI contrast agents. We describe the synthesis of five gadolinium (III) complexes and three heterobimetallic complexes associating gadolinium (III) with copper (II). Indeed, gadolinium is currently used in contrast agents for MRI and the radioactive isotope of copper, copper-64 is used in PET imaging. We describe also a procedure to measure the relaxivity of the gadolinium complexes at low and high magnetic fields. Five complexes exhibit relaxivity values five times larger than commercially available MRI contrast agents. The last part of this work is related to the synthesis, characterization and photophysical studies of four molecular antennas incorporating porphyrins and BODIPY. We describe two original synthetic pathways. The first one is based on the formation of boron-oxygen bonds by substitution of the fluorine atoms bound to BODIPY boron atom. The second synthetic pathway involves the Huisgen s dipolar cycloaddition. We describe photophysical data and give evidences of the energy transfer from BODIPY to porphyrin. We present also the first example of energy transfer from porphyrin to BODIPY in the system obtained by click chemistry involving an extended blue BODIPY.DIJON-BU Doc.électronique (212319901) / SudocSudocFranceF
Superconductivity in the Two-Band Hubbard Model in Infinite Dimensions
We study a two-band Hubbard model in the limit of infinite dimensions, using
a combination of analytical methods and Monte-Carlo techniques. The normal
state is found to display various metal to insulators transitions as a function
of doping and interaction strength. We derive self-consistent equations for the
local Green's functions in the presence of superconducting long-range order,
and extend previous algorithms to this case. We present direct numerical
evidence that in a specific range of parameter space, the normal state is
unstable against a superconducting state characterized by a strongly frequency
dependent order-parameter.Comment: 12 pages (14 figures not included, available upon request), Latex,
LPTENS Preprint 93/1
Molecular Electrocatalysis for Oxygen Reduction by Cobalt Porphyrins Adsorbed at Liquid/Liquid Interfaces
Molecular electrocatalysis for oxygen reduction at a polarized water/1,2-dichloroethane (DCE) interface was studied, involving aqueous protons, ferrocene (Fc) in DCE and amphiphilic cobalt porphyrin catalysts adsorbed at the interface. The catalyst, (2,8,13,17-tetraethyl-3,7,12,18-tetramethyl-5-p-aminophenylporphyrin) cobalt(II) (CoAP), functions like conventional cobalt porphyrins, activating 02 via coordination by the formation of a superoxide structure. Furthermore, due to the hydrophilic nature of the aminophenyl group, CoAP has a strong affinity for the water/DCE interface as evidenced by lipophilicity mapping calculations and surface tension measurements, facilitating the protonation of the CoAP-O-2 complex and its reduction by ferrocene. The reaction is electrocatalytic as its rate depends on the applied Galvani potential difference between the two phases
Automatic medical encoding with SNOMED categories
BACKGROUND: In this paper, we describe the design and preliminary evaluation of a new type of tools to speed up the encoding of episodes of care using the SNOMED CT terminology. METHODS: The proposed system can be used either as a search tool to browse the terminology or as a categorization tool to support automatic annotation of textual contents with SNOMED concepts. The general strategy is similar for both tools and is based on the fusion of two complementary retrieval strategies with thesaural resources. The first classification module uses a traditional vector-space retrieval engine which has been fine-tuned for the task, while the second classifier is based on regular variations of the term list. For evaluating the system, we use a sample of MEDLINE. SNOMED CT categories have been restricted to Medical Subject Headings (MeSH) using the SNOMED-MeSH mapping provided by the UMLS (version 2006). RESULTS: Consistent with previous investigations applied on biomedical terminologies, our results show that performances of the hybrid system are significantly improved as compared to each single module. For top returned concepts, a precision at high ranks (P0) of more than 80% is observed. In addition, a manual and qualitative evaluation on a dozen of MEDLINE abstracts suggests that SNOMED CT could represent an improvement compared to existing medical terminologies such as MeSH. CONCLUSION: Although the precision of the SNOMED categorizer seems sufficient to help professional encoders, it is concluded that clinical benchmarks as well as usability studies are needed to assess the impact of our SNOMED encoding method in real settings. AVAILABILITIES : The system is available for research purposes on: http://eagl.unige.ch/SNOCat
From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later
Comparative genomics is the cornerstone of identification of gene functions. The immense number of living organisms precludes experimental identification of functions except in a handful of model organisms. The bacterial domain is split into large branches, among which the Firmicutes occupy a considerable space. Bacillus subtilis has been the model of Firmicutes for decades and its genome has been a reference for more than 10 years. Sequencing the genome involved more than 30 laboratories, with different expertises, in a attempt to make the most of the experimental information that could be associated with the sequence. This had the expected drawback that the sequencing expertise was quite varied among the groups involved, especially at a time when sequencing genomes was extremely hard work. The recent development of very efficient, fast and accurate sequencing techniques, in parallel with the development of high-level annotation platforms, motivated the present resequencing work. The updated sequence has been reannotated in agreement with the UniProt protein knowledge base, keeping in perspective the split between the paleome (genes necessary for sustaining and perpetuating life) and the cenome (genes required for occupation of a niche, suggesting here that B. subtilis is an epiphyte). This should permit investigators to make reliable inferences to prepare validation experiments in a variety of domains of bacterial growth and development as well as build up accurate phylogenies
Institut d’études de l’Islam et des sociétés du monde musulman – IISMM
Jean-Philippe Bras, professeur à l’Université de Rouen Les transformations du droit dans le monde musulman Il s’agissait pour cette première année de séminaire de faire un tour d’horizon des interrogations que suscite le droit islamique dans ses manifestations passées et contemporaines, en identifiant quelques questionnements clés, autour de la configuration des systèmes juridiques, de la dynamique et de la statique du droit, de ses contextes de mise en œuvre. C’était aussi l’occasion d’un pr..
The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase
The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray
spectrometer, studied since 2015 for flying in the mid-30s on the Athena space
X-ray Observatory, a versatile observatory designed to address the Hot and
Energetic Universe science theme, selected in November 2013 by the Survey
Science Committee. Based on a large format array of Transition Edge Sensors
(TES), it aims to provide spatially resolved X-ray spectroscopy, with a
spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of
5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement
Review (SRR) in June 2022, at about the same time when ESA called for an
overall X-IFU redesign (including the X-IFU cryostat and the cooling chain),
due to an unanticipated cost overrun of Athena. In this paper, after
illustrating the breakthrough capabilities of the X-IFU, we describe the
instrument as presented at its SRR, browsing through all the subsystems and
associated requirements. We then show the instrument budgets, with a particular
emphasis on the anticipated budgets of some of its key performance parameters.
Finally we briefly discuss on the ongoing key technology demonstration
activities, the calibration and the activities foreseen in the X-IFU Instrument
Science Center, and touch on communication and outreach activities, the
consortium organisation, and finally on the life cycle assessment of X-IFU
aiming at minimising the environmental footprint, associated with the
development of the instrument. Thanks to the studies conducted so far on X-IFU,
it is expected that along the design-to-cost exercise requested by ESA, the
X-IFU will maintain flagship capabilities in spatially resolved high resolution
X-ray spectroscopy, enabling most of the original X-IFU related scientific
objectives of the Athena mission to be retained. (abridged).Comment: 48 pages, 29 figures, Accepted for publication in Experimental
Astronomy with minor editin
The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase
The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.The French contribution to X-IFU is funded by CNES, CNRS and CEA. This work has been also supported by ASI (Italian Space Agency) through the Contract 2019-27-HH.0, and by the ESA (European Space Agency) Core Technology Program (CTP) Contract No. 4000114932/15/NL/BW and the AREMBES - ESA CTP No.4000116655/16/NL/BW. This publication is part of grant RTI2018-096686-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This publication is part of grant RTI2018-096686-B-C21 and PID2020-115325GB-C31 funded by MCIN/AEI/10.13039/501100011033
- …