7 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Seizure forecasting: bifurcations in the long and winding road.

    No full text
    To date the unpredictability of seizures remains a source of suffering for people with epilepsy, motivating decades of research into methods to forecast seizures. Originally, only few scientists and neurologists ventured into this niche endeavor, which, given the difficulty of the task, soon turned into a long and winding road. Over the past decade however, our narrow field has seen a major acceleration with trials of chronic EEG devices and the subsequent discovery of cyclical patterns in the occurrence of seizures. Now, a burgeoning science of seizure timing is emerging, which in turns informs best forecasting strategies for upcoming clinical trials. Although the finish line might be in view, many challenges remain to make seizure forecasting a reality. This review covers the most recent scientific, technical and medical developments, discusses methodology in detail and sets a number of goals for future studies

    Cycles in epilepsy.

    No full text
    Epilepsy is among the most dynamic disorders in neurology. A canonical view holds that seizures, the characteristic sign of epilepsy, occur at random, but, for centuries, humans have looked for patterns of temporal organization in seizure occurrence. Observations that seizures are cyclical date back to antiquity, but recent technological advances have, for the first time, enabled cycles of seizure occurrence to be quantitatively characterized with direct brain recordings. Chronic recordings of brain activity in humans and in animals have yielded converging evidence for the existence of cycles of epileptic brain activity that operate over diverse timescales: daily (circadian), multi-day (multidien) and yearly (circannual). Here, we review this evidence, synthesizing data from historical observational studies, modern implanted devices, electronic seizure diaries and laboratory-based animal neurophysiology. We discuss advances in our understanding of the mechanistic underpinnings of these cycles and highlight the knowledge gaps that remain. The potential clinical applications of a knowledge of cycles in epilepsy, including seizure forecasting and chronotherapy, are discussed in the context of the emerging concept of seizure risk. In essence, this Review addresses the broad question of why seizures occur when they occur

    Multiday cycles of heart rate are associated with seizure likelihood:An observational cohort study

    No full text
    BACKGROUND: Circadian and multiday rhythms are found across many biological systems, including cardiology, endocrinology, neurology, and immunology. In people with epilepsy, epileptic brain activity and seizure occurrence have been found to follow circadian, weekly, and monthly rhythms. Understanding the relationship between these cycles of brain excitability and other physiological systems can provide new insight into the causes of multiday cycles. The brain-heart link has previously been considered in epilepsy research, with potential implications for seizure forecasting, therapy, and mortality (i.e., sudden unexpected death in epilepsy). METHODS: We report the results from a non-interventional, observational cohort study, Tracking Seizure Cycles. This study sought to examine multiday cycles of heart rate and seizures in adults with diagnosed uncontrolled epilepsy (N=31) and healthy adult controls (N=15) using wearable smartwatches and mobile seizure diaries over at least four months (M=12.0, SD=5.9; control M=10.6, SD=6.4). Cycles in heart rate were detected using a continuous wavelet transform. Relationships between heart rate cycles and seizure occurrence were measured from the distributions of seizure likelihood with respect to underlying cycle phase. FINDINGS: Heart rate cycles were found in all 46 participants (people with epilepsy and healthy controls), with circadian (N=46), about-weekly (N=25) and about-monthly (N=13) rhythms being the most prevalent. Of the participants with epilepsy, 19 people had at least 20 reported seizures, and 10 of these had seizures significantly phase locked to their multiday heart rate cycles. INTERPRETATION: Heart rate cycles showed similarities to multiday epileptic rhythms and may be comodulated with seizure likelihood. The relationship between heart rate and seizures is relevant for epilepsy therapy, including seizure forecasting, and may also have implications for cardiovascular disease. More broadly, understanding the link between multiday cycles in the heart and brain can shed new light on endogenous physiological rhythms in humans. FUNDING: This research received funding from the Australian Government National Health and Medical Research Council (investigator grant 1178220), the Australian Government BioMedTech Horizons program, and the Epilepsy Foundation of America's ‘My Seizure Gauge’ grant

    Electric Field and Mobility Dependent First-Order Recombination Losses in Organic Solar Cells

    No full text
    The origin of photocurrent losses in the power-generating regime of organic solar cells (OSCs) remains a controversial topic, although recent literature suggests that the competition between bimolecular recombination and charge extraction determines the bias dependence of the photocurrent. Here we studied the steady-state recombination dynamics in bulk-heterojunction OSCs with different hole mobilities from short-circuit to maximum power point. We show that in this regime, in contrast to previous transient extracted charge and absorption spectroscopy studies, first-order recombination outweighs bimolecular recombination of photo-generated charge carriers. We demonstrate that the first-order losses increase with decreasing slower carrier mobility, and attribute them to either mobilization of charges trapped at the donor:acceptor interface through the Poole-Frenkel effect, and/or recombination of photogenerated and injected charges. The dependence of both first-order and higher-order losses on the slower carrier mobility explains why the field dependence of OSC efficiencies are historically to charge-extraction losses

    Small is Powerful: Recent Progress in Solution-Processed Small Molecule Solar Cells

    No full text
    corecore