30 research outputs found

    Background synaptic activity in rat entorhinal cortex shows a progressively greater dominance of inhibition over excitation from deep to superficial layers

    Get PDF
    The entorhinal cortex (EC) controls hippocampal input and output, playing major roles in memory and spatial navigation. Different layers of the EC subserve different functions and a number of studies have compared properties of neurones across layers. We have studied synaptic inhibition and excitation in EC neurones, and we have previously compared spontaneous synaptic release of glutamate and GABA using patch clamp recordings of synaptic currents in principal neurones of layers II (L2) and V (L5). Here, we add comparative studies in layer III (L3). Such studies essentially look at neuronal activity from a presynaptic viewpoint. To correlate this with the postsynaptic consequences of spontaneous transmitter release, we have determined global postsynaptic conductances mediated by the two transmitters, using a method to estimate conductances from membrane potential fluctuations. We have previously presented some of this data for L3 and now extend to L2 and L5. Inhibition dominates excitation in all layers but the ratio follows a clear rank order (highest to lowest) of L2>L3>L5. The variance of the background conductances was markedly higher for excitation and inhibition in L2 compared to L3 or L5. We also show that induction of synchronized network epileptiform activity by blockade of GABA inhibition reveals a relative reluctance of L2 to participate in such activity. This was associated with maintenance of a dominant background inhibition in L2, whereas in L3 and L5 the absolute level of inhibition fell below that of excitation, coincident with the appearance of synchronized discharges. Further experiments identified potential roles for competition for bicuculline by ambient GABA at the GABAA receptor, and strychnine-sensitive glycine receptors in residual inhibition in L2. We discuss our results in terms of control of excitability in neuronal subpopulations of EC neurones and what these may suggest for their functional roles. © 2014 Greenhill et al

    Hebbian and homeostatic plasticity mechanisms in regular spiking and intrinsic bursting cells of cortical layer 5

    Get PDF
    Layer 5 contains the major projection neurons of the neocortex and is composed of two major cell types: regular spiking (RS) cells, which have cortico-cortical projections, and intrinsic bursting cells (IB), which have subcortical projections. Little is known about the plasticity processes and specifically the molecular mechanisms by which these two cell classes develop and maintain their unique integrative properties. In this study, we find that RS and IB cells show fundementally different experience-dependent plasticity processes and integrate Hebbian and homeostatic components of plasticity differently. Both RS and IB cells showed TNFα-dependent homeostatic plasticity in response to sensory deprivation, but IB cells were capable of a much faster synaptic depression and homeostatic rebound than RS cells. Only IB cells showed input-specific potentiation that depended on CaMKII autophosphorylation. Our findings demonstrate that plasticity mechanisms are not uniform within the neocortex, even within a cortical layer, but are specialized within subcircuits

    Monitoring quality of care in hepatocellular carcinoma: A modified delphi consensus

    Get PDF
    Although there are several established international guidelines on the management of hepatocellular carcinoma (HCC), there is limited information detailing specific indicators of good quality care. The aim of this study was to develop a core set of quality indicators (QIs) to underpin the management of HCC. We undertook a modified, two-round, Delphi consensus study comprising a working group and experts involved in the management of HCC as well as consumer representatives. QIs were derived from an extensive review of the literature. The role of the participants was to identify the most important and measurable QIs for inclusion in an HCC clinical quality registry. From an initial 94 QIs, 40 were proposed to the participants. Of these, 23 QIs ultimately met the inclusion criteria and were included in the final set. This included (a) nine related to the initial diagnosis and staging, including timing to diagnosis, required baseline clinical and laboratory assessments, prior surveillance for HCC, diagnostic imaging and pathology, tumor staging, and multidisciplinary care; (b) thirteen related to treatment and management, including role of antiviral therapy, timing to treatment, localized ablation and locoregional therapy, surgery, transplantation, systemic therapy, method of response assessment, and supportive care; and (c) one outcome assessment related to surgical mortality. Conclusion: We identified a core set of nationally agreed measurable QIs for the diagnosis, staging, and management of HCC. The adherence to these best practice QIs may lead to system-level improvement in quality of care and, ultimately, improvement in patient outcomes, including survival

    The AMPA receptor antagonist perampanel suppresses epileptic activity in human focal cortical dysplasia

    Get PDF
    Focal cortical dysplasia (FCD) is one of the most common malformations causing refractory epilepsy. Dysregulation of glutamatergic systems plays a critical role in the hyperexcitability of dysplastic neurons in FCD lesions. The pharmacoresistant nature of epilepsy associated with FCD may be due to a lack of well tolerated and precise antiepileptic drugs that can target glutamate receptors. Here, for the first time in human FCD brain slices, we show that the established, non-competitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, perampanel has potent antiepileptic action. Moreover, we demonstrate that this effect is due to a reduction in burst firing behavior in human FCD microcircuits. These data support a potential role for the treatment of refractory epilepsy associated with FCD in human patients

    The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies

    Get PDF
    The Murchison Widefield Array (MWA) is one of three Square Kilometre Array Precursor telescopes and is located at the Murchison Radio-astronomy Observatory in the Murchison Shire of the mid-west of Western Australia, a location chosen for its extremely low levels of radio frequency interference. The MWA operates at low radio frequencies, 80–300 MHz, with a processed bandwidth of 30.72 MHz for both linear polarisations, and consists of 128 aperture arrays (known as tiles) distributed over a ~3-km diameter area. Novel hybrid hardware/software correlation and a real-time imaging and calibration systems comprise the MWA signal processing backend. In this paper, the as-built MWA is described both at a system and sub-system level, the expected performance of the array is presented, and the science goals of the instrument are summarised

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    “Thence to the River Plate”: steamship mobilities in the South Atlantic, 1842-1869

    No full text
    This article engages theories of mobility to examine the Royal Mail Steam Packet Company’s 1851 expansion into South America. Through a focus on cooperative strategies and trans-oceanic connections, the article also considers the interplay between Atlantic and wider world shipping networks. The first part of the paper compares the Royal Mail Steam Packet Company’s (RMSPC’s) South American branch to the more established West Indies route, and probes the significance of the Company’s expansion into the South Atlantic in light of the RMSPC’s perceived national and imperial role. The second part of the paper turns to the RMSPC’s cooperative strategies and connections between the Atlantic and the Pacific oceans. Considered as a case study, the RMSPC indicates that the boundaries of British imperial influence incorporated a degree of flexibility during this period, pointing to a need to revise rigid conceptualisations of empire. An argument is also made for the continuing relevance of the Atlantic as a spatial unit during this era, despite the increasingly global connections of the nineteenth-century world

    Bicuculline induced paroxysmal depolarizing shifts in EC neurones.

    No full text
    <p>A. Intracellular recordings show large depolarizing events associated with multiple spikes were recorded in both L5 and L3 during bicuculline (10 ”M) perfusion. In L2 these were much smaller and often associated with just one or two spikes. B. In addition their appearance (timed from the entry of bicuculline into the bath) was delayed in L2 compared to the deeper layers.</p

    Characteristics of EPSCs in L3.

    No full text
    <p>A. Voltage clamp recordings from one neurone show that the AMPAr antagonist NBQX essentially abolished sEPSCs. At more positive holding potentials, occasional, slow sEPSCs were detected that were mediated by NMDAr, as they were blocked by 2-AP5. B. A comparison of sEPSC properties Showed that the mean frequency of events in L3 was greater than that in either L2 or L5. Amplitudes were similar across layers, but kinetics (C) were slower in L2 compared to the deeper layers. D. Action potential driven release accounts for a much higher proportion of spontaneous excitation in L3. Cumulative probability analysis of data pooled from 10 neurones (graph on left) showed a large increase in IEI (shift to the right) in L3 that was substantially greater than that seen in L2 or L5. This is very clearly illustrated by the bar graphs (right) showing the accompanying change in frequencies (sEPSC frequency minus mEPSC frequency). E. Neither amplitude nor kinetics of EPSCs in the same neurones were significantly different in the presence of TTX (mEPSCs shown in blue).</p
    corecore