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Summary (120/200 words)

Focal cortical dysplasia (FCD) is one of the most common malformations causing refractory 

epilepsy. Dysregulation of glutamatergic systems plays a critical role in the hyperexcitability of 

dysplastic neurons in FCD lesions. The pharmacoresistant nature of epilepsy associated with FCD 

may be due to a lack of well tolerated and precise antiepileptic drugs that can target glutamate 

receptors. Here, for the first time in human FCD brain slices, we show that the established, non-

competitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, 

perampanel has potent antiepileptic action. Moreover, we demonstrate that this effect is due to a 

reduction in burst firing behavior in human FCD microcircuits. These data support a potential role 

for the treatment of refractory epilepsy associated with FCD in human patients. 

Key words: Epilepsy, focal cortical dysplasia, glutamate, perampanel, AMPA
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1. INTRODUCTION

Focal cortical dysplasia type IIb (FCD IIb) lesions are notoriously epileptogenic and associated 

with drug refractory epilepsy. From a histological point of view, FCD IIb presents with 

cytoarchitectural abnormalities of the neocortex, often with the presence of balloon cells, 

dysmorphic neurons, and hypomyelinated white matter. Due to the propensity for 

pharmacoresistance in FCD IIb, a significant proportion of patients will undergo surgical resection 

of the lesion in order to control seizures. The ability to conduct a “complete” resection can be 

complicated by a number of factors. Crucially, due to the fact that FCD IIb lesions frequently 

occur close to eloquent cortex and important fiber tracts, it is not always possible to conduct a full 

resection as this may lead to post-surgical neurological deficits. Therefore, alternative therapeutic 

approaches for epilepsy arising from this particular type of lesion are required.  

There is evidence to suggest a role for glutamate in the refractory nature of FCD IIb. Increased 

glutamatergic input and altered expression/function of N-methyl-D-aspartate receptors has been 

demonstrated in surgical samples from patients with FCD IIb. An abundance of vesicular 

glutamate transporter 1 (VGLUT1) positive synapses on dysmorphic neurons in the epileptogenic 

focus of a FCD IIb1 is likely to lead to increased cortico-cortical excitatory input to dysplastic 

regions. Moreover, there have also been reports of increased glutamate signal in some patients 

with cortical developmental malformations as detected by magnetic resonance imaging.2 Indeed, 

seizure generation in human microcircuits is dependent upon the emergence of population 

glutamatergic activity.3

Given the refractory nature of epilepsy caused by FCD IIb lesions and the hypothesis that 

glutamate may be elevated in and around FCD IIb lesions, we have aimed to examine the impact 

of an antiepileptic drug that acts to non-competitively antagonize α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptors. A number of compounds have been demonstrated to 

antagonise the AMPA receptor. These include experimental compounds such as 6-nitro-2,3-dioxo-

1,4-dihydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) and LY293558. A number of AMPA 

receptor antagonists have been employed in clinical trials (e.g. talampanel) but only one has been 

approved for clinical use,  This drug, perampanel (Fycompa), is capable of maintaining the closure 

of AMPA receptors even in the presence of elevated glutamate levels. Perampanel is currently 

licensed for the adjunctive treatment of partial-onset seizures with or without generalized seizures A
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in children (≥12 years old) and adults and has also been approved for use in genetic generalized 

epilepsy.4 Previous ex vivo studies have examined the impact of perampanel on epileptiform 

activity induced by the addition of picrotoxin5 and altered extracellular potassium (K+) and 

magnesium (Mg2+) levels in the artificial cerebrospinal fluid (ACSF) in resected hippocampal 

slices from a single juvenile patient with refractory temporal lobe epilepsy.6 A recent paper has 

demonstrated the ability of perampanel to supress spontaneous epileptiform activity via a selective 

inhibitory effect on excitatory posy-synaptic currents.7 Here, for the first time, we demonstrate the 

efficacy of perampanel on ex vivo human ictal activity arising from a neocortical developmental 

abnormality associated with intractable epilepsy.   

(488 Words)

2. METHODS

The electrophysiological data obtained from slice studies were derived from three patients with 

medically intractable epilepsy who were undergoing elective neurosurgical tissue resection for the 

removal of a suspected FCD. Before surgery, all patients gave their informed consent for the use 

of the resected brain tissue for scientific studies. This study was approved by the County Durham 

& Tees Valley 1 Local Research Ethics Committee (06/Q1003/51) (date of review 03/07/06), and 

had clinical governance approved by the Newcastle upon Tyne Hospitals NHS Trust 

(CM/PB/3707). Studies at Aston were approved by the Black Country Local Ethics Committee 

(10/H1202/23; 04/30/10), the Aston University ethics committee (Project 308 cellular studies in 

epilepsy), and through the Research and Development Department at Birmingham Children’s 

Hospital (IRAS ID12287). 

2.1 In vitro human neocortex recordings 

Briefly, human cortical samples were derived from material removed as part of surgical treatment 

of medically intractable cortical epilepsy from the left parietal lobe, left frontal lobe, and right 

temporal lobe regions with written informed consent of the patients (N=3). Slice preparation and 

extracellular recording were conducted using methods as previously described.8 The time between 

resection and slice preparation was <5 minutes. Multielectrode array (MEA) recordings were 

conducted using Buzsaki-style probes (64-electrode; NeuroNexus Technologies, Ann Arbor, 

Michigan) connected to an Intan RHD2000-series amplifier system (Intan Technologies, Los A
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Angeles, California). Signals were amplified and digitized (20 kHz) using the Intan system and 

down-sampled to 2 kHz for offline analysis of the extracellular local field potential (LFP) using 

MATLAB (MathWorks, Natick, Maine).

2.2 Extracellular data and statistical analysis

For LFP recordings, power spectrum analysis was calculated by integrating the root mean square 

value of the signal in frequency bands from 1 to 1000 Hz in sequential 10-minute time windows in 

the baseline state and following the application of perampanel. Power values were expressed as 

raw values and a paired t-test was applied to examine statistical significance between baseline and 

following drug application. Multiunit activity (MUA) was extracted from each channel of the 

MEA using a MATLAB (MathWorks, Natick, Maine) script available in the wave_clus toolbox.9 

The signal was band-pass filtered between 300 Hz and 3 kHz, and a threshold was calculated 

through an estimation of the standard deviation of the background noise ( ), as shown below.𝛿𝑛

𝛿𝑛 = 𝑚𝑒𝑑𝑖𝑎𝑛( |𝑥|
0.6745)

Negative deflections in the filtered signal that were more than five times this estimated 

background noise were selected. An  matrix was created with the waveforms, where n is the 𝑚 𝑥 𝑛

total number of detections and m is the number of samples for each waveform. The spikes were 

aligned in the point of maximum negative deflection after an up-sampling to 120 kHz through 

cubic spline interpolation. Finally, each waveform was visually inspected to exclude events of 

clear artefactual origin. For the analysis of high frequency oscillations (HFOs) from the MEA 

recordings, an “in-house” HFO detection algorithm was applied. A non-parametric paired test 

(Wilcoxon) was used to calculate statistical significance. To quantify the difference in parameters 

between the conditions, a percentage of difference was calculated for each channel using the 

equation below, where  and  are the parameter X (HFO, MUA, or Power) in the 𝑋𝑃𝐸𝑅 𝑋𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

perampanel-treated and baseline conditions, respectively.

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (%) =  100 ∗
𝑋𝑃𝐸𝑅 ― 𝑋𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑋𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

All statistical calculations were performed with GraphPad Prism (La Jolla, California).A
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(540 Words)

3. RESULTS

Similar to previous studies, spontaneous epileptic activity was not observed in slices prepared 

from resected tissue from patients with FCD.10,11 In order to elicit epileptiform activity, slices 

were perfused with modified ACSF containing reduced Mg2+ (0.25 mM) and elevated K+ (8 mM). 

Previous studies have demonstrated that the use of this modified ACSF (mACSF) is known to 

induce ictal events in brain slices obtained from patients with a history of epilepsy.3 Preliminary 

data from our group have shown that application of this mACSF to non-epileptic comparison 

tissue does not elicit epileptic activity (Cunningham et al., unpublished data). These findings 

suggest that this particular type of human epileptic tissue demonstrates a reduced threshold for 

ictal behavior due to alterations in cellular and network excitability.10 Following application of the 

mACSF, recurring ictal events emerged (Figure 1, G) and, once established, a mean ( standard 

error of the mean) area power value of 2807  418.1 µV2 was observed across all samples 

examined (N=6). Upon application of perampanel (10 µM), ictal events were abolished and power 

spectral analysis revealed that the area power was significantly reduced to 114.6  30.1 µV2 

(paired student t-test, P < 0.05; Figure 1, H-I).

In patients with epilepsy, plasma concentrations of perampanel have been reported to vary 

between 1.06–3.26 µM.12 In order to examine the effect of a therapeutic concentration of the drug 

on FCD epileptic activity, we next tested the drug at a lower concentration (1 µM). In these 

studies, we used MEA technology in an attempt to capture the activity of single neurons in tandem 

with LFP epileptic activity and, therefore, understand the impact of perampanel on collective 

neuronal firing behavior. As was observed in the glass microelectrode studies (Figure 1, G-I), the 

addition of perampanel (1 µM) significantly reduced the power of ictal LFP activity (Figure 2, A) 

(control – median: 872.6 μV2/Hz, interquartile range [IQR]: 384.5 to 1434 vs perampanel – 

median: 214.3 μV2/Hz, IQR: 110 to 352.8; reduction of 69.1%, IQR: -76.96 to -55.59) recorded 

using MEAs (Figure 2, D). Recordings with MEAs revealed bursts of single-unit action potentials 

occuring concurrently with the ictal LFP event (Figure 2, C). The addition of perampanel 

significantly reduced the spike count (control – median: 201.3 spikes/minute, IQR: 72.7 to 439.7 

vs perampanel – median: 65.9 spikes/minute, IQR: 4.28 to 274.6; reduction of 49.96%, IQR: -

89.97 to -15.95), and bursting behavior (control – median: 61.9%, IQR: 46.3 to 77.5 vs A
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perampanel – median: 11.9%, IQR: 0.02 to 51.3%; reduction of 72.3%, IQR -97.6 to -1.5 (Figure 

2, E-G). High frequency oscillations (HFOs), a hallmark of epileptogenic networks, were also 

significantly reduced by the application of the drug (control – median: 3.06 HFO/minute, IQR: 

2.02 to 4.38 vs perampanel – median: 0.53 HFO/minute, IQR: 0.27 to 1.05; reduction of 79.51%, 

IQR: -93.48 to -50.19 (Figure 2, D)). Perampanel was also observed to significantly reduce the 

degree of cross correlation between multi-unit activity and HFOs (Figure 2, I-L)

(483 Words)

4. DISCUSSION

These electrophysiological and pharmacological data demonstrate that the use of perampanel is 

effective in reducing seizure-like activity in neocortical slices resected from human patients with 

FCD, suggesting potential benefit for the use of this drug in treating pharmacoresistant epilepsy in 

this patient group.

Mechanistically, perampanel has been demonstrated to be a potent non-competitive inhibitor of 

AMPA receptors.13 Studies conducted in rodent hippocampal slices have demonstrated the direct 

inhibition of AMPA-receptor–mediated currents,14 and AMPA-mediated synaptic transmission.15 

AMPA receptors are crucial for generation, synchronization, and spread of epileptic discharges.16 

In cortical tissue removed from patients with partial-onset epilepsy, AMPA receptor density is 

increased,17 and the sensitivity of the receptor to glutamate enhanced by altered RNA editing.18 

Previous work has suggested that AMPA receptors are a potential target for therapeutic 

intervention in patients with epilepsy associated with FCD. In one study examining mRNA 

expression, AMPA receptor subunit transcripts (GluR4) were increased in dysplastic neurons.19 

The mammalian target of rapamycin (mTOR) pathway has emerged as a primary pathogenic 

mechanism underlying cortical lesions such as FCD IIb. Preclinical and clinical studies have 

demonstrated the effectiveness of mTOR inhibitors in treating FCD, although the mechanism 

remains unclear. Studies in neuronal cultures have demonstrated that mTOR inhibitors 

significantly reduced the surface expression of AMPA receptors on cortical neurons,20 thus 

supporting a potential role for AMPA receptors in epileptic FCD networks. Pharmacological 

blockade of AMPA receptors constitutes a more readily available therapeutic option. Extracellular 

recordings in human epileptic tissue have previously demonstrated that ictal events are sensitive to A
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AMPA receptor antagonism using a competitive blocker (6-nitro-2,3-dioxo-1,4-

dihydrobenzo[f]quinoxaline-7-sulfonamide; NBQX).21 Whole cell patch clamp recordings in 

human FCD brain slices have shown that excitatory post-synaptic currents mediated via AMPA 

receptors where abolishedby perampanel whereas inhibitory events mediated via GABAA receptor 

were relatively unaltered.7 This differential effect of perampanel is likely to underlie the profound 

anti-seizure effect we report in our current study. In the present study, concentrations similar to 

those used by Wright et al., (2020)7 (10M) produced a complete suppression of ictal activity. In 

addition, we have showed that the suppression of ictal LFP activity and associated HFOs is 

maintained by concentrations of perampanel likely to be observed in plasma concentrations in 

human patients (c. 1 mol/L).12 The MEA recordings in human tissue revealed that  the 

pathological bursting activity of neurones (which is coincidental with ictal discharges) is strongly 

inhibited, Interestingly, in the presence of  the lower concentration of perampanel a large 

proportion of neurons are still active. This finding supports the notion that AMPA mediated 

synaptic conductances are critical for bursting behaviour that drives ictal activity16 and perampanel 

is capable of blocking these specific synaptic conductances and  thus limiting associated epileptic 

activity (Figure 2, H) in FCD neuronal microcircuits. 

Additional work is required to understand the role of AMPA receptors in FCD and, in particular, 

the therapeutic potential of perampanel in this patient group. Our ex vivo human tissue findings 

are, to a degree, corroborated clinically by a retrospective analysis study22 showing seizure 

suppression with perampanel in adolescent patients with FCD. It remains to be seen if the results 

presented here are translationally robust in a clinical setting. A recent observational multicentre 

study has shown efficacy and safety for perampanel as an adjunctive therapy in a drug resistant 

focal epilepsy patient cohort that had a significant number of participants with focal cortical 

dysplasias23.  In that respect, a randomized, controlled trial examining the clinical efficacy of 

perampanel in patients with FCD is warranted. 

(574 Words)
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Figure legends

Figure 1. Suppression of seizure activity by perampanel in human FCD brain slices. (A) 

Axial T2 MR image (from Patient 2) through the temporal poles illustrating the location (white 

arrow) of an FCD lesion in the right lateral anterior temporal pole; (B) H&E-stained sections 

showing dysmorphic neurons; (C) immunohistochemistry for non-phosphorylated neurofilament 

protein (SMI32) showing aberrant NFP accumulation in dysmorphic neurons; (D) NeuN 

immunohistochemistry illustrating regions with better preserved cortical structure compared with 

(E) which shows regions with abnormal architecture and neuronal depletion ; (F) patient age, sex, 

FCD IIb lesion and location, semiology, and AEDs; (G) raw LFP traces illustrating ictal 

discharges recorded in 0.25 mM Mg2+ and 8 mM K+ in the absence (top) and presence of 

perampanel (bottom); (H) power spectra generated from example traces in the absence (black) and 

presence of perampanel (red); (I) area power (1-1000 Hz) values for all experiments 

demonstrating the ability of perampanel to suppress epileptiform activity in all samples tested. 

Scale bars represent 0.5 mV and 1 minute.

AED, antiepileptic drug; CBZ, carbamazepine; CLOB, clobazam; FCD, focal cortical dysplasia; 

H&E, haemotoxylin and eosin; LEV, levetiracetam; LFP, local field potential; LTG, lamotrigine; 

MRI, magnetic resonance imaging; NeuN, neuronal nuclear antigen; NFP, neurofilament protein; 

PER, perampanel; TOP, topiramate.

Figure 2. Impact of therapeutically relevant concentration of perampanel on epileptic 

network dynamics. MEA recordings of ictal discharges recorded in 0.25 mM Mg2+ and 8 mM K+ 

showing (A) raw LFP, (B) HFO, and (C) MUA rastergram behavior in baseline (left) conditions 

and in the presence of perampanel (1 µM) (right). Graphs illustrate the effect of perampanel on 

(D) HFO, (E) MUA, (F) burstiness, and (G) LFP for all channels analyzed, and (H) shows the 

impact of perampanel for each of these variables represented as percentage change; all parameters 

were significantly reduced when washed with perampanel (paired Wilcoxon test: ****P < 

0.0001). Correlation between HFO and MUA showing (I) the average (black line) and standard 

error (grey shadow) of raw signal segments containing HFO from one example channel; (J) 

average of the same segments in (I) filtered between 60 and 600Hz; (K) cross-correlograms of the 

time difference between MUA and HFO for the same channel displayed in (I) and (B); for the 

baseline condition, n = 153 HFO and for the treated condition, n = 47 HFO. (L) Boxplot of the A
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mean and mode of all cross-correlograms (as displayed in K) from all channels (n = 250 channels). 

Scale bars for (A) represent 0.1 mV and 1 minute and for (I) and (J) represent 40 and 5 µV, 

respectively.

HFO, high frequency oscillations; LFP, local field potential; MEA, multielectrode array; MUA, 

multiunit acitivity; PER, perampanel. 
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