151 research outputs found

    An Unbiased Survey of 500 Nearby Stars for Debris Disks: A JCMT Legacy Program

    Get PDF
    We present the scientific motivation and observing plan for an upcoming detection survey for debris disks using the James Clerk Maxwell Telescope. The SCUBA-2 Unbiased Nearby Stars (SUNS) Survey will observe 500 nearby main sequence and sub-giant stars (100 of each of the A, F, G, K and M spectral classes) to the 850 micron extragalactic confusion limit to search for evidence of submillimeter excess, an indication of circumstellar material. The survey distance boundaries are 8.6, 16.5, 22, 25 and 45 pc for M, K, G, F and A stars, respectively, and all targets lie between the declinations of -40 deg to 80 deg. In this survey, no star will be rejected based on its inherent properties: binarity, presence of planetary companions, spectral type or age. This will be the first unbiased survey for debris disks since IRAS. We expect to detect ~125 debris disks, including ~50 cold disks not detectable in current shorter wavelength surveys. A substantial amount of complementary data will be required to constrain the temperatures and masses of discovered disks. High resolution studies will likely be required to resolve many of the disks. Therefore, these systems will be the focus of future observational studies using a variety of observatories to characterize their physical properties. For non-detected systems, this survey will set constraints (upper limits) on the amount of circumstellar dust, of typically 200 times the Kuiper Belt mass, but as low as 10 times the Kuiper Belt mass for the nearest stars in the sample (approximately 2 pc).Comment: 11 pages, 7 figures (3 color), accepted by the Publications of the Astronomical Society of the Pacifi

    Secular Evolution in Mira Variable Pulsations

    Full text link
    Stellar evolution theory predicts that asymptotic giant branch stars undergo a series of short thermal pulses that significantly change their luminosity and mass on timescales of hundreds to thousands of years. Secular changes in these stars resulting from thermal pulses can be detected as measurable changes in period if the star is undergoing Mira pulsations. The American Association of Variable Star Observers (AAVSO) International Database currently contains visual data for over 1500 Mira variables. Light curves for these stars span nearly a century in some cases, making it possible to study the secular evolution of the pulsation behavior on these timescales. In this paper, we present the results of our study of period change in 547 Mira variables using data from the AAVSO. We find non-zero rates of period change, dlnP/dt, at the 2-sigma significance level in 57 of the 547 stars, at the 3-sigma level in 21 stars, and at the level of 6-sigma or greater in eight of the 547. The latter eight stars have been previously noted in the literature, and our derived rates of period changes largely agree with published values. The largest and most statistically significant dlnP/dt are consistent with the rates of period change expected during thermal pulses on the AGB. A number of other stars exhibit non-monotonic period changes on decades-long timescales, the cause of which is not yet known.Comment: 37 pages, with 9 figures and 1 table. The complete electronic version of Table 1 is available from the authors upon request. Accepted for publication in The Astronomical Journa

    The JCMT Gould Belt Survey: Evidence for radiative heating in Serpens MWC 297 and its influence on local star formation

    Get PDF
    We present SCUBA-2 450micron and 850micron observations of the Serpens MWC 297 region, part of the JCMT Gould Belt Survey of nearby star-forming regions. Simulations suggest that radiative feedback influences the star-formation process and we investigate observational evidence for this by constructing temperature maps. Maps are derived from the ratio of SCUBA-2 fluxes and a two component model of the JCMT beam for a fixed dust opacity spectral index of beta = 1.8. Within 40 of the B1.5Ve Herbig star MWC 297, the submillimetre fluxes are contaminated by free-free emission with a spectral index of 1.03+-0.02, consistent with an ultra-compact HII region and polar winds/jets. Contamination accounts for 73+-5 per cent and 82+-4 per cent of peak flux at 450micron and 850micron respectively. The residual thermal disk of the star is almost undetectable at these wavelengths. Young Stellar Objects are confirmed where SCUBA-2 850micron clumps identified by the fellwalker algorithm coincide with Spitzer Gould Belt Survey detections. We identify 23 objects and use Tbol to classify nine YSOs with masses 0.09 to 5.1 Msun. We find two Class 0, one Class 0/I, three Class I and three Class II sources. The mean temperature is 15+-2K for the nine YSOs and 32+-4K for the 14 starless clumps. We observe a starless clump with an abnormally high mean temperature of 46+-2K and conclude that it is radiatively heated by the star MWC 297. Jeans stability provides evidence that radiative heating by the star MWC 297 may be suppressing clump collapse.Comment: 24 pages, 13 figures, 7 table

    Impact of vaccination on the association of COVID-19 with cardiovascular diseases:An OpenSAFELY cohort study

    Get PDF
    Infection with SARS-CoV-2 is associated with an increased risk of arterial and venous thrombotic events, but the implications of vaccination for this increased risk are uncertain. With the approval of NHS England, we quantified associations between COVID-19 diagnosis and cardiovascular diseases in different vaccination and variant eras using linked electronic health records for ~40% of the English population. We defined a 'pre-vaccination' cohort (18,210,937 people) in the wild-type/Alpha variant eras (January 2020-June 2021), and 'vaccinated' and 'unvaccinated' cohorts (13,572,399 and 3,161,485 people respectively) in the Delta variant era (June-December 2021). We showed that the incidence of each arterial thrombotic, venous thrombotic and other cardiovascular outcomes was substantially elevated during weeks 1-4 after COVID-19, compared with before or without COVID-19, but less markedly elevated in time periods beyond week 4. Hazard ratios were higher after hospitalised than non-hospitalised COVID-19 and higher in the pre-vaccination and unvaccinated cohorts than the vaccinated cohort. COVID-19 vaccination reduces the risk of cardiovascular events after COVID-19 infection. People who had COVID-19 before or without being vaccinated are at higher risk of cardiovascular events for at least two years.</p

    Identification and HLA-Tetramer-Validation of Human CD4(+) and CD8(+) T Cell Responses against HCMV Proteins IE1 and IE2

    Get PDF
    Human cytomegalovirus (HCMV) is an important human pathogen. It is a leading cause of congenital infection and a leading infectious threat to recipients of solid organ transplants as well as of allogeneic hematopoietic cell transplants. Moreover, it has recently been suggested that HCMV may promote tumor development. Both CD4+ and CD8+ T cell responses are important for long-term control of the virus, and adoptive transfer of HCMV-specific T cells has led to protection from reactivation and HCMV disease. Identification of HCMV-specific T cell epitopes has primarily focused on CD8+ T cell responses against the pp65 phosphoprotein. In this study, we have focused on CD4+ and CD8+ T cell responses against the immediate early 1 and 2 proteins (IE1 and IE2). Using overlapping peptides spanning the entire IE1 and IE2 sequences, peripheral blood mononuclear cells from 16 healthy, HLA-typed, donors were screened by ex vivo IFN-γ ELISpot and in vitro intracellular cytokine secretion assays. The specificities of CD4+ and CD8+ T cell responses were identified and validated by HLA class II and I tetramers, respectively. Eighty-one CD4+ and 44 CD8+ T cell responses were identified representing at least seven different CD4 epitopes and 14 CD8 epitopes restricted by seven and 11 different HLA class II and I molecules, respectively, in total covering 91 and 98% of the Caucasian population, respectively. Presented in the context of several different HLA class II molecules, two epitope areas in IE1 and IE2 were recognized in about half of the analyzed donors. These data may be used to design a versatile anti-HCMV vaccine and/or immunotherapy strategy

    Impact of vaccination on the association of COVID-19 with cardiovascular diseases: An OpenSAFELY cohort study

    Get PDF
    AbstractInfection with SARS-CoV-2 is associated with an increased risk of arterial and venous thrombotic events, but the implications of vaccination for this increased risk are uncertain. With the approval of NHS England, we quantified associations between COVID-19 diagnosis and cardiovascular diseases in different vaccination and variant eras using linked electronic health records for ~40% of the English population. We defined a ‘pre-vaccination’ cohort (18,210,937 people) in the wild-type/Alpha variant eras (January 2020-June 2021), and ‘vaccinated’ and ‘unvaccinated’ cohorts (13,572,399 and 3,161,485 people respectively) in the Delta variant era (June-December 2021). We showed that the incidence of each arterial thrombotic, venous thrombotic and other cardiovascular outcomes was substantially elevated during weeks 1-4 after COVID-19, compared with before or without COVID-19, but less markedly elevated in time periods beyond week 4. Hazard ratios were higher after hospitalised than non-hospitalised COVID-19 and higher in the pre-vaccination and unvaccinated cohorts than the vaccinated cohort. COVID-19 vaccination reduces the risk of cardiovascular events after COVID-19 infection. People who had COVID-19 before or without being vaccinated are at higher risk of cardiovascular events for at least two years.</jats:p

    Using trained dogs and organic semi-conducting sensors to identify asymptomatic and mild SARS-CoV-2 infections: an observational study

    Get PDF
    BACKGROUND: A rapid, accurate, non-invasive diagnostic screen is needed to identify people with SARS-CoV-2 infection. We investigated whether organic semi-conducting (OSC) sensors and trained dogs could distinguish between people infected with asymptomatic or mild symptoms, and uninfected individuals, and the impact of screening at ports-of-entry. METHODS: Odour samples were collected from adults, and SARS-CoV-2 infection status confirmed using RT-PCR. OSC sensors captured the volatile organic compound (VOC) profile of odour samples. Trained dogs were tested in a double-blind trial to determine their ability to detect differences in VOCs between infected and uninfected individuals, with sensitivity and specificity as the primary outcome. Mathematical modelling was used to investigate the impact of bio-detection dogs for screening. RESULTS: About, 3921 adults were enrolled in the study and odour samples collected from 1097 SARS-CoV-2 infected and 2031 uninfected individuals. OSC sensors were able to distinguish between SARS-CoV-2 infected individuals and uninfected, with sensitivity from 98% (95% CI 95–100) to 100% and specificity from 99% (95% CI 97–100) to 100%. Six dogs were able to distinguish between samples with sensitivity ranging from 82% (95% CI 76–87) to 94% (95% CI 89–98) and specificity ranging from 76% (95% CI 70–82) to 92% (95% CI 88–96). Mathematical modelling suggests that dog screening plus a confirmatory PCR test could detect up to 89% of SARS-CoV-2 infections, averting up to 2.2 times as much transmission compared to isolation of symptomatic individuals only. CONCLUSIONS: People infected with SARS-CoV-2, with asymptomatic or mild symptoms, have a distinct odour that can be identified by sensors and trained dogs with a high degree of accuracy. Odour-based diagnostics using sensors and/or dogs may prove a rapid and effective tool for screening large numbers of people. Trial Registration NCT04509713 (clinicaltrials.gov)

    The JCMT Gould Belt Survey: evidence for radiative heating in Serpens MWC 297 and its influence on local star formation

    Get PDF
    We present SCUBA-2 450 and 850 μm observations of the Serpens MWC 297 region, part of the James Clerk Maxwell Telescope (JCMT) Gould Belt Survey of nearby star-forming regions. Simulations suggest that radiative feedback influences the star formation process and we investigate observational evidence for this by constructing temperature maps. Maps are derived from the ratio of SCUBA-2 fluxes and a two-component model of the JCMT beam for a fixed dust opacity spectral index of β = 1.8. Within 40 arcsec of the B1.5Ve Herbig star MWC 297, the submillimetre fluxes are contaminated by free-free emission with a spectral index of 1.03 ± 0.02, consistent with an ultracompact H II region and polar winds/jets. Contamination accounts for 73 ± 5 per cent and 82 ± 4 per cent of peak flux at 450 μm and 850 μm, respectively. The residual thermal disc of the star is almost undetectable at these wavelengths. Young stellar objects (YSOs) are confirmed where SCUBA-2 850 μm clumps identified by the FELLWALKER algorithm coincide with Spitzer Gould Belt Survey detections. We identify 23 objects and use Tbol to classify nine YSOs with masses 0.09 to 5.1 M⊙. We find two Class 0, one Class 0/I, three Class I and three Class II sources. The mean temperature is 15 ± 2 K for the nine YSOs and 32 ± 4 K for the 14 starless clumps. We observe a starless clump with an abnormally high mean temperature of 46 ± 2 K and conclude that it is radiatively heated by the star MWC 297. Jeans stability provides evidence that radiative heating by the star MWC 297 may be suppressing clump collapse

    The JCMT Gould Belt Survey: first results from the SCUBA-2 observations of the Ophiuchus molecular cloud and a virial analysis of its prestellar core population

    Get PDF
    In this paper, we present the first observations of the Ophiuchus molecular cloud performed as part of the James Clerk Maxwell Telescope (JCMT) Gould Belt Survey (GBS) with the SCUBA-2 instrument. We demonstrate methods for combining these data with previous HARP CO, Herschel, and IRAM N2H+ observations in order to accurately quantify the properties of the SCUBA-2 sources in Ophiuchus. We produce a catalogue of all of the sources found by SCUBA-2. We separate these into protostars and starless cores. We list all of the starless cores and perform a full virial analysis, including external pressure. This is the first time that external pressure has been included in this level of detail. We find that the majority of our cores are either bound or virialized. Gravitational energy and external pressure are on average of a similar order of magnitude, but with some variation from region to region. We find that cores in the Oph A region are gravitationally bound prestellar cores, while cores in the Oph C and E regions are pressure-confined. We determine that N2H+ is a good tracer of the bound material of prestellar cores, although we find some evidence for N2H+ freeze-out at the very highest core densities. We find that non-thermal linewidths decrease substantially between the gas traced by C18O and that traced by N2H+, indicating the dissipation of turbulence at higher densities. We find that the critical Bonnor-Ebert stability criterion is not a good indicator of the boundedness of our cores. We detect the pre-brown dwarf candidate Oph B-11 and find a flux density and mass consistent with previous work. We discuss regional variations in the nature of the cores and find further support for our previous hypothesis of a global evolutionary gradient across the cloud from south-west to north-east, indicating sequential star formation across the regio

    Flat tax for social security

    Get PDF
    This is the final version of the article. Available from OUP via the DOI in this record.We present observations of the Cepheus Flare obtained as part of the James Clerk Maxwell Telescope (JCMT) Gould Belt Legacy Survey (GBLS) with the SCUBA-2 instrument. We produce a catalogue of sources found by SCUBA-2, and separate these into starless cores and protostars. We determine masses and densities for each of our sources, using source temperatures determined by the Herschel Gould Belt Survey. We compare the properties of starless cores in four different molecular clouds: L1147/58, L1172/74, L1251 and L1228. We find that the core mass functions for each region typically show shallower-than-Salpeter behaviour. We find that L1147/58 and L1228 have a high ratio of starless cores to Class II protostars, while L1251 and L1174 have a low ratio, consistent with the latter regions being more active sites of current star formation, while the former are forming stars less actively. We determine that if modelled as thermally supported Bonnor-Ebert spheres, most of our cores have stable configurations accessible to them. We estimate the external pressures on our cores using archival 13CO velocity dispersion measurements and find that our cores are typically pressure confined, rather than gravitationally bound. We perform a virial analysis on our cores, and find that they typically cannot be supported against collapse by internal thermal energy alone, due primarily to the measured external pressures. This suggests that the dominant mode of internal support in starless cores in the Cepheus Flare is either non-thermal motions or internal magnetic fields.KP wishes to acknowledge STFC postdoctoral support under grant numbers ST/K002023/1 and ST/M000877/1 and studentship support under grant number ST/K501943/1 while this research was carried out. The James Clerk Maxwell Telescope has historically been operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the United Kingdom, the National Research Council of Canada and the Netherlands Organisation for Scientific Research. Additional funds for the construction of SCUBA-2 were provided by the Canada Foundation for Innovation. The STARLINK software (Currie et al. 2014) is supported by the East Asian Observatory. This research used the services of the Canadian Advanced Network for Astronomy Research (CANFAR) which in turn is supported by CANARIE, Compute Canada, University of Victoria, the National Research Council of Canada, and the Canadian Space Agency. This research used the facilities of the Canadian Astronomy Data Centre operated by the National Research Council of Canada with the support of the Canadian Space Agency. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. This research has made use of the NASA Astrophysics Data System. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountai
    corecore