951 research outputs found

    The phase transitions in 2D Z(N) vector models for N>4

    Full text link
    We investigate both analytically and numerically the renormalization group equations in 2D Z(N) vector models. The position of the critical points of the two phase transitions for N>4 is established and the critical index \nu\ is computed. For N=7, 17 the critical points are located by Monte Carlo simulations and some of the corresponding critical indices are determined. The behavior of the helicity modulus is studied for N=5, 7, 17. Using these and other available Monte Carlo data we discuss the scaling of the critical points with N and some other open theoretical problems.Comment: 19 pages, 8 figures, 10 tables; version to appear on Phys. Rev.

    Critical behavior of the compact 3d U(1) theory in the limit of zero spatial coupling

    Full text link
    Critical properties of the compact three-dimensional U(1) lattice gauge theory are explored at finite temperatures on an asymmetric lattice. For vanishing value of the spatial gauge coupling one obtains an effective two-dimensional spin model which describes the interaction between Polyakov loops. We study numerically the effective spin model for N_t=1,4,8 on lattices with spatial extension ranging from L=64 to L=256. Our results indicate that the finite-temperature U(1) lattice gauge theory belongs to the universality class of the two-dimensional XY model, thus supporting the Svetitsky-Yaffe conjecture.Comment: 17 pages, 5 figures; two references added, a few comments included, title changed; version to appear on J. Stat. Mec

    LONG-TERM TEMPERATURE MONITORING OF VOLCANIC AREAS BY DISTRIBUTED OPTICAL FIBER SENSORS

    Get PDF
    We present the first results of long- term monitoring of temperature profiles at the Campi Flegrei caldera. The measurements were carried out along a 76 meters-deep borehole already equipped with a borehole strain-meter. We installed a cable containing a loop of optical fiber in order to use a fiber-optics distributed sensor based on stimulated Brillouin scattering. The obtained data are consistent with results of both deep and surface geothermal explorations and indicate that geothermal gradient can be efficiently measured and monitored by the proposed technique

    The spectrum of massive excitations of 3d 3-state Potts model and universality

    Get PDF
    We consider the mass spectrum of the 3dd 3-state Potts model in the broken phase (a) near the second order Ising critical point in the temperature - magnetic field plane and (b) near the weakly first order transition point at zero magnetic field. In the case (a), we compare the mass spectrum with the prediction from universality of mass ratios in the 3dd Ising class; in the case (b), we determine a mass ratio to be compared with the corresponding one in the spectrum of screening masses of the (3+1)dd SU(3) pure gauge theory at finite temperature in the deconfined phase near the transition. The agreement in the comparison in the case (a) would represent a non-trivial test of validity of the conjecture of spectrum universality. A positive answer to the comparison in the case (b) would suggest the possibility to extend this conjecture to weakly first order phase transitions.Comment: 20 pages, 12 figures; uses axodraw.st

    Critical behavior of the compact 3d U(1) gauge theory on isotropic lattices

    Full text link
    We report on the computation of the critical point of the deconfinement phase transition, critical indices and the string tension in the compact three dimensional U(1) lattice gauge theory at finite temperatures. The critical indices govern the behavior across the deconfinement phase transition in the pure gauge U(1) model and are generally expected to coincide with the critical indices of the two-dimensional XY model. We studied numerically the U(1) model for N_t=8 on lattices with spatial extension ranging from L=32 to L=256. Our determination of the infinite volume critical point on the lattice with N_t=8 differs substantially from the pseudo-critical coupling at L=32, found earlier in the literature and implicitly assumed as the onset value of the deconfined phase. The critical index ν\nu computed from the scaling of the pseudo-critical couplings with the extension of the spatial lattice agrees well with the XY value ν\nu=1/2. On the other hand, the index η\eta shows large deviation from the expected universal value. The possible reasons of such behavior are discussed in details.Comment: 15 pages, 7 figures; version accepted for publication on J. Stat. Mech

    Ghost-gluon coupling, power corrections and ΛMS‾\Lambda_{\overline {\rm MS}} from twisted-mass lattice QCD at Nf=2

    Get PDF
    We present results concerning the non-perturbative evaluation of the ghost-gluon running QCD coupling constant from Nf=2N_f=2 twisted-mass lattice calculations. A novel method for calibrating the lattice spacing, independent of the string tension and hadron spectrum is presented with results in agreement with previous estimates. The value of ΛMS‾\Lambda_{\overline{MS}} is computed from the running of the QCD coupling only after extrapolating to zero dynamical quark mass and after removing a non-perturbative OPE contribution that is assumed to be dominated by the dimension-two \VEV{A^2} gluon condensate. The effect due to the dynamical quark mass in the determination of \Lams is discussed.Comment: 33 pages, 6 fig

    Situation identification in smart wearable computing systems based on machine learning and Context Space Theory

    Get PDF
    Wearable devices and smart sensors are increasingly adopted to monitor the behaviors of human and artificial agents. Many applications rely on the capability of such devices to recognize daily life activities performed by the monitored users in order to tailor their behaviors with respect to the occurring situations. Despite the constant evolution of smart sensing technologies and the numerous research in this field, an accurate recognition of in-the-wild situations still represents an open research challenge. This work proposes a novel approach for situation identification capable of recognizing the activities and the situations in which they occur in different environments and behavioral contexts, processing data acquired by wearable and environmental sensors. An architecture of a situation-aware wearable computing system is proposed, inspired by Endsley's situation-awareness model, consisting of a two-step approach for situation identification. The approach first identifies the daily life activities via a learning-based technique. Simultaneously, the context in which the activities are performed is recognized using Context Space Theory. Finally, the fusion between the context state and the activities allows identifying the complex situations in which the user is acting. The knowledge regarding the situations forms the basis on which novel and smarter applications can be realized. The approach has been evaluated on the ExtraSensory public dataset and compared with state-of-the-art techniques, achieving an accuracy of 96% for the recognition of situations and with significantly low computational time, demonstrating the efficacy of the two-step situation identification approach

    Evaluation of the Efficacy and Safety of a Compound of Micronized Flavonoids in Combination With Vitamin C and Extracts of Centella asiatica, Vaccinium myrtillus, and Vitis vinifera for the Reduction of Hemorrhoidal Symptoms in Patients With Grade II and III Hemorrhoidal Disease: A Retrospective Real-Life Study

    Get PDF
    Background and Aim: Several evidences have shown how, in hemorrhoidal disease, phlebotonic flavonoid agents such as quercetin reduce capillary permeability by increasing vascular walls resistance, how rutin and vitamin C have antioxidant properties, and that Centella asiatica has reparative properties towards the connective tissue. A retrospective study was designed in order to evaluate the efficacy and safety of a compound consisting of micronized flavonoids in combination with vitamin C and extracts of C. asiatica, Vaccinium myrtillus, and Vitis vinifera for grade II and III hemorrhoidal disease. Patients and Methods: Data of 49 patients, over 18, who were following a free diet regimen, not on therapy with other anti-hemorrhoid agents, treated with a compound consisting of 450 mg of micronized diosmin, 300 mg of C. asiatica, 270 mg of micronized hesperidin, 200 mg of V. vinifera, 160 mg of vitamin C, 160 mg of V. myrtillus, 140 mg of micronized quercetin, and 130 mg of micronized rutin (1 sachet or 2 tablets a day) for 7 days were collected. Hemorrhoid grade according to Goligher’s scale together with anorectal symptoms (edema, prolapse, itching, thrombosis, burning, pain, tenesmus, and bleeding) both before treatment (T0) and after 7 days of therapy (T7) were collected. Primary outcomes were the reduction of at least one degree of hemorrhoids according to Goligher’s scale assessed by proctological examination and compound safety. The secondary outcome was the reduction of anorectal symptoms assessed by questionnaires administered to patients. Results: Forty-four patients (89.8%) presented a reduction in hemorrhoidal grade of at least one grade (p < 0.001). No adverse events with the use of the compound were noted. A significant reduction was observed in all anorectal symptoms evaluated (p < 0.05). No predictors of response to the compound were identified among the clinical and demographic variables collected. Conclusion: The compound analyzed was effective and safe for patients with grade II and III hemorrhoidal disease according to Goligher’s scale
    • …
    corecore