446 research outputs found

    Mercury (Hg) concentrations and stable isotope signatures in golden eagle eggs 2009-2013: a Predatory Bird Monitoring Scheme (PBMS) report

    Get PDF
    The Predatory Bird Monitoring Scheme (PBMS; http://pbms.ceh.ac.uk/) is the umbrella project that encompasses the Centre for Ecology & Hydrology’s National Capability activities for contaminant monitoring and surveillance work on avian predators. The PBMS aims to detect and quantify current and emerging chemical threats to the environment and in particular to vertebrate wildlife. Mercury (Hg) is a neurotoxin and there has been global concern over its impact on humans and wildlife. It has been predicted that global Hg emissions may rise in the future because of increased coal-fired power generation, but, in 2013, the United Nations Environment Programme (UNEP) agreed The Minamata Convention on Mercury, a global treaty to protect human health and the environment from the adverse effects of mercury. An overarching aim of the convention is to control the anthropogenic releases of Hg to the environment. Therefore, long-term trends in environmental Hg concentrations are uncertain. One cost-effective means of assessing such trends is to monitor exposure in sentinel wildlife species. Golden eagles Aquila chrysaetos breed and forage in the Scottish uplands and could prove a sentinel for changing Hg deposition in upland terrestrial areas and associated wildlife exposure. We measured Hg residues in failed golden eagle eggs with the aim of providing baseline data on current levels of exposure. Specifically, we measured Hg concentrations in failed eggs laid between 2009 and 2013 in inland (> 3km from the coast) and coastal (<3 km from the coast) nests. We distinguished nests in this way because coastal nesting birds can feed on seabirds that can accumulate high levels of Hg themselves. Marine dietary Hg inputs could potentially obscure any changes in Hg accumulation associated with altered upland terrestrial Hg deposition, and so we hypothesized that only eggs from inland nests may be useful sentinels. In conjunction with Hg measurements, we examined stable isotope (SI) signatures (carbon (δ13C), nitrogen (δ15N) and sulphur (δ34S)) to determine if they differed between eggs from inland and coastal nests in a manner consistent with feeding primarily on terrestrial and marine prey, respectively. We also examined Hg concentrations and SI signatures of failed white-tailed sea eagle (Haliaeetus albicilla) eggs from nests on the west coast of Scotland. We used these measurements as a comparator against which to assess the extent to which SI and Hg measurements in eggs from coastal golden eagle nests might be indicative of feeding on marine prey and scavenge. We found that SI signatures (particularly δ34S isotopic ratios) and Hg concentrations were similar in golden eagle eggs from coastal nests and white tailed sea eagle eggs. SIs and Hg concentrations in eggs from inland nests were much more variable, and a third had SI signatures that were the same as those of eggs from coastal nests, suggesting that they too were laid by females feeding on a coastal diet. A cluster of seven eggs from inland nests had distinctive δ34S and δ15N values (below 11.0 ‰ and 5.7 ‰ respectively) and it was inferred that these were most likely laid by females feeding terrestrially. Hg concentrations were non-detectable in these seven eggs whereas the median concentration in golden eagle eggs associated with coastal feeding was 0.412 µg/g dry weight, similar to that (0.569 µg/g dry weight) in white tailed sea eagle eggs. Hg concentrations in all eggs were below those thought to be associated with embryotoxic effects. The lack of detectable Hg concentrations in GE eggs associated with upland terrestrial feeding is problematic if these eggs are to be used as sentinels of change in upland Hg concentrations. Re-analysis of a set of eggs using a more sensitive analytical technique may resolve this issue and should be explored, otherwise other sentinels may need to be investigated

    Mercury (Hg) concentrations in predatory bird livers and eggs as an indicator of changing environmental concentrations: a Predatory Bird Monitoring Scheme (PBMS) report

    Get PDF
    Concern over the potential health effects of mercury (Hg) has prompted an international agreement, the Minamata Convention on Mercury, that aims to control anthropogenic releases to the environment and reduce potential impacts on humans and wildlife. Monitoring is required to determine to what extent the convention is successful. The PBMS has monitored long-term trends in environmental Hg concentration using raptors and fish-eating birds as sentinels to track changes in exposure. Overall, PBMS monitoring of Hg in predatory birds provides an evidence base by which the impact of the Minamata Convention on environmental mercury concentrations in Britain can be assessed. The current study consisted of four main aims that would help rationalize and inform our long-term Hg monitoring. (i) Updating long-term data for liver Hg concentrations in sparrowhawks, (Accipiter nisus), a sentinel for exposure in lowland terrestrial habitats. (ii) Exploration of the use of alternative tissues for monitoring Hg in sparrowhawks. (iii) Comparison of trends in liver Hg residues in sparrowhawks and kestrels (Falco tinnunculus) to examine if trends in sparrowhawks, which feed on relatively mobile avian prey, reflect those in kestrels which mainly feed on small mammals that are more likely to reflect local contamination. (iv) Completion of work initiated last year to explore the potential for using Hg concentrations in the eggs of inland-feeding golden eagles (Aquila chrysaetos) as a sentinel to track changes in Hg bioavailability and uptake by biota in upland terrestrial systems. We measured liver Hg residues in sparrowhawks that had died in 2013 and 2014 to quantify current Hg exposure in lowland terrestrial habitats and to add to previously reported long-term data. Mercury residues in birds that died in 2013 and 2014 were largely consistent with those reported in recent previous years and were below those associated with mortalities. Three birds had residues higher than those associated with potential adverse effects on reproduction. Analysis of long-term data (1990-2014) indicated liver Hg residues in sparrowhawks vary with age and sex; concentrations are highest in adult males. Starvation also elevates liver Hg concentrations. Taking age and sex into account and using only data for non-starved birds, we investigated temporal trends and found that, although there has been between-year variation in liver Hg concentrations, there has been no consistent upward or downward trend. We used the long-term dataset to define “current baseline” liver Hg concentrations against which levels in future years, and consistent time trends, can be quantitatively and rapidly assessed. We found that total Hg concentrations in sparrowhawk liver, kidney and brain were closely related. We conclude it is possible to transfer our long-term monitoring of Hg in sparrowhawks (including retrospective calculation of “current baseline concentrations”) to analysis of kidney or brain. This would preserve [what are relatively small] sparrowhawk livers for other analyses. Comparison of historic trends in liver Hg in sparrowhawks and kestrels indicated that rates of decline during 1980-1998 were similar in the two species. This is consistent with the premise that sparrrowhawks are as likely as kestrels to be representative of changes in environmental exposure to (and associated bioaccumulation of) Hg in lowland terrestrial systems. The conclusion of our work on Hg concentrations in golden eagle eggs enabled us to quantify a “baseline concentration” for eggs laid by females feeding predominantly on terrestrial prey. We can use this to identify significant changes in future exposure and associated bioaccumulation and thereby use our measurements as sentinel of future change in Hg bioavailability in upland habitats in northern Britain

    Large-angle production of charged pions by 3 GeV/c - 12.9 GeV/c protons on beryllium, aluminium and lead targets

    Get PDF
    Measurements of the double-differential π±\pi^{\pm} production cross-section in the range of momentum 100 \MeVc \leq p < 800 \MeVc and angle 0.35 \rad \leq \theta < 2.15 \rad in proton--beryllium, proton--aluminium and proton--lead collisions are presented. The data were taken with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \GeVc to 12.9 \GeVc hitting a target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radius cylindrical time projection chamber (TPC) placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross-sections at six incident proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc, 8.9 \GeVc (Be only), 12 \GeVc and 12.9 \GeVc (Al only)) and compared to previously available data

    Measurement of the production of charged pions by protons on a tantalum target

    Get PDF
    A measurement of the double-differential cross-section for the production of charged pions in proton--tantalum collisions emitted at large angles from the incoming beam direction is presented. The data were taken in 2002 with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \GeVc to 12 \GeVc hitting a tantalum target with a thickness of 5% of a nuclear interaction length. The angular and momentum range covered by the experiment (100 \MeVc \le p < 800 \MeVc and 0.35 \rad \le \theta <2.15 \rad) is of particular importance for the design of a neutrino factory. The produced particles were detected using a small-radius cylindrical time projection chamber (TPC) placed in a solenoidal magnet. Track recognition, momentum determination and particle identification were all performed based on the measurements made with the TPC. An elaborate system of detectors in the beam line ensured the identification of the incident particles. Results are shown for the double-differential cross-sections d2σ/dpdθ{{\mathrm{d}^2 \sigma}} / {{\mathrm{d}p\mathrm{d}\theta}} at four incident proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc). In addition, the pion yields within the acceptance of typical neutrino factory designs are shown as a function of beam momentum. The measurement of these yields within a single experiment eliminates most systematic errors in the comparison between rates at different beam momenta and between positive and negative pion production.Comment: 49 pages, 31 figures. Version accepted for publication on Eur. Phys. J.

    Measurement of the production cross-section of positive pions in the collision of 8.9 GeV/c protons on beryllium

    Get PDF
    The double-differential production cross-section of positive pions, d2σπ+/dpdΩd^2\sigma^{\pi^{+}}/dpd\Omega, measured in the HARP experiment is presented. The incident particles are 8.9 GeV/c protons directed onto a beryllium target with a nominal thickness of 5% of a nuclear interaction length. The measured cross-section has a direct impact on the prediction of neutrino fluxes for the MiniBooNE and SciBooNE experiments at Fermilab. After cuts, 13 million protons on target produced about 96,000 reconstructed secondary tracks which were used in this analysis. Cross-section results are presented in the kinematic range 0.75 GeV/c < pπp_{\pi} < 6.5 GeV/c and 30 mrad < θπ\theta_{\pi} < 210 mrad in the laboratory frame.Comment: 39 pages, 21 figures. Version accepted for publication by Eur. Phys. J.

    Forward production of charged pions with incident π±\pi^{\pm} on nuclear targets measured at the CERN PS

    Get PDF
    Measurements of the double-differential π±\pi^{\pm} production cross-section in the range of momentum 0.5 \GeVc \leq p \le 8.0 \GeVc and angle 0.025 \rad \leq \theta \le 0.25 \rad in interactions of charged pions on beryllium, carbon, aluminium, copper, tin, tantalum and lead are presented. These data represent the first experimental campaign to systematically measure forward pion hadroproduction. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. Incident particles, impinging on a 5% nuclear interaction length target, were identified by an elaborate system of beam detectors. The tracking and identification of the produced particles was performed using the forward spectrometer of the HARP detector. Results are obtained for the double-differential cross-sections d2σ/dpdΩ {{\mathrm{d}^2 \sigma}}/{{\mathrm{d}p\mathrm{d}\Omega}} mainly at four incident pion beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc). The measurements are compared with the GEANT4 and MARS Monte Carlo simulationComment: to be published on Nuclear Physics

    Large-angle production of charged pions by 3 GeV/c - 12 GeV/c protons on carbon, copper and tin targets

    Get PDF
    A measurement of the double-differential π±\pi^{\pm} production cross-section in proton--carbon, proton--copper and proton--tin collisions in the range of pion momentum 100 \MeVc \leq p < 800 \MeVc and angle 0.35 \rad \le \theta <2.15 \rad is presented. The data were taken with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \GeVc to 12 \GeVc hitting a target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was done using a small-radius cylindrical time projection chamber (TPC) placed in a solenoidal magnet. An elaborate system of detectors in the beam line ensured the identification of the incident particles. Results are shown for the double-differential cross-sections at four incident proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc)

    Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy beta and nuclear recoils in liquid argon with DEAP-1

    Get PDF
    The DEAP-1 low-background liquid argon detector was used to measure scintillation pulse shapes of electron and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination (PSD) down to an electron-equivalent energy of 20 keV. In the surface dataset using a triple-coincidence tag we found the fraction of beta events that are misidentified as nuclear recoils to be <1.4×107<1.4\times 10^{-7} (90% C.L.) for energies between 43-86 keVee and for a nuclear recoil acceptance of at least 90%, with 4% systematic uncertainty on the absolute energy scale. The discrimination measurement on surface was limited by nuclear recoils induced by cosmic-ray generated neutrons. This was improved by moving the detector to the SNOLAB underground laboratory, where the reduced background rate allowed the same measurement with only a double-coincidence tag. The combined data set contains 1.23×1081.23\times10^8 events. One of those, in the underground data set, is in the nuclear-recoil region of interest. Taking into account the expected background of 0.48 events coming from random pileup, the resulting upper limit on the electronic recoil contamination is <2.7×108<2.7\times10^{-8} (90% C.L.) between 44-89 keVee and for a nuclear recoil acceptance of at least 90%, with 6% systematic uncertainty on the absolute energy scale. We developed a general mathematical framework to describe PSD parameter distributions and used it to build an analytical model of the distributions observed in DEAP-1. Using this model, we project a misidentification fraction of approx. 101010^{-10} for an electron-equivalent energy threshold of 15 keV for a detector with 8 PE/keVee light yield. This reduction enables a search for spin-independent scattering of WIMPs from 1000 kg of liquid argon with a WIMP-nucleon cross-section sensitivity of 104610^{-46} cm2^2, assuming negligible contribution from nuclear recoil backgrounds.Comment: Accepted for publication in Astroparticle Physic

    Gossip in organisations: Contexts, consequences and controversies

    Get PDF
    This article examines the key themes surrounding gossip including its contexts, the various outcomes (positive and negative) of gossip as well as a selection of challenges and controversies. The challenges which are highlighted revolve around definitional issues, methodological approaches, and ethical considerations. Our analysis suggests that the characteristics and features of gossip lend itself to a process-oriented approach whereby the beginning and, particularly, end points of gossip are not always easily identified. Gossip about a subject or person can temporarily disappear only for it to re-surface at some later stage. In addition, questions pertaining to the effects of gossip and ethical-based arguments depend on the nature of the relationships within the gossip triad (gossiper, listener/respondent and target)

    Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results

    Get PDF
    The chromosphere is a thin layer of the solar atmosphere that bridges the relatively cool photosphere and the intensely heated transition region and corona. Compressible and incompressible waves propagating through the chromosphere can supply significant amounts of energy to the interface region and corona. In recent years an abundance of high-resolution observations from state-of-the-art facilities have provided new and exciting ways of disentangling the characteristics of oscillatory phenomena propagating through the dynamic chromosphere. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate the role waves play in supplying energy to sustain chromospheric and coronal heating. Here, we review the recent progress made in characterising, categorising and interpreting oscillations manifesting in the solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review
    corecore