169 research outputs found

    Forcing mechanisms behind variations in TOC concentration of lake waters Forcing mechanisms behind variations in total organic carbon (TOC) concentration of lake waters during the past eight centuries – palaeolimnological evidence from southern Sweden Forcing mechanisms behind variations in TOC concentration of lake waters

    Get PDF
    International audienceDecadal-scale variations in total organic carbon (TOC) concentration in lake water since AD 1200 in two small lakes in southern Sweden were reconstructed based on visible-near infrared spectroscopy (VNIRS) of their recent sediment successions. In order to assess the impacts of local land-use changes and regional variations in 5 sulphur deposition and climate on the inferred changes in TOC concentration, the same sediment records were subjected to multi-proxy palaeolimnological analyses. Changes in lake-water pH were inferred from diatom analysis, whereas pollen-based land-use reconstructions (Landscape Reconstruction Algorithm) together with geo-chemical records provided information on catchment-scale environmental changes, 10 and comparisons were made with available records of climate and population density. Our long-term reconstructions reveal that TOC concentrations were generally high prior to AD 1900, with second-order variations coupled mainly to changes in agricultural land-use intensity. The last century showed significant changes, and unusually low TOC concentrations were recorded in 1930–1990, followed by a recent increase. Vari-15 ations in sulphur emissions, with an increase in the early 1900s to a peak around AD 1980 and a subsequent decrease, were most likely the main driver of these dynamics, although processes related to the introduction of modern forestry and recent increases in precipitation and temperature may have contributed. The increase in lake-water TOC concentration from around AD 1980 may therefore reflect a recovery process. Given 20 that the effects of sulphate deposition now subside, other forcing mechanisms related to land management and climate change will possibly become the main drivers of TOC concentration changes in boreal lake waters in the future

    Historical TOC concentration minima during peak sulfur deposition in two Swedish lakes

    Get PDF
    International audienceDecadal-scale variations in total organic carbon (TOC) concentration in lake water since AD 1200 in two small lakes in southern Sweden were reconstructed based on visible–near-infrared spectroscopy (VNIRS) of their recent sediment successions. In order to assess the impacts of local land-use changes, regional variations in sulfur, and nitrogen deposition and climate variations on the inferred changes in TOC concentration, the same sediment records were subjected to multi-proxy palaeolimnological analyses. Changes in lake-water pH were inferred from diatom analysis , whereas pollen-based land-use reconstructions (Landscape Reconstruction Algorithm) together with geochemical records provided information on catchment-scale environmental changes, and comparisons were made with available records of climate and population density. Our long-term reconstructions reveal that inferred lake-water TOC concentrations were generally high prior to AD 1900, with additional variability coupled mainly to changes in forest cover and agricultural land-use intensity. The last century showed significant changes, and unusually low TOC concentrations were inferred at AD 1930–1990, followed by a recent increase , largely consistent with monitoring data. Variations in sulfur emissions, with an increase in the early 1900s to a peak around AD 1980 and a subsequent decrease, were identified as an important driver of these dynamics at both sites, while processes related to the introduction of modern forestry and recent increases in precipitation and temperature may have contributed, but the effects differed between the sites. The increase in lake-water TOC concentration from around AD 1980 may therefore reflect a recovery process. Given that the effects of sulfur deposition now subside and that the recovery of lake-water TOC concentrations has reached pre-industrial levels, other forcing mechanisms related to land management and climate change may become the main drivers of TOC concentration changes in boreal lake waters in the future

    Field testing for toxic algae with a microarray: initial results from the MIDTAL project

    Get PDF
    One of the key tasks in MIDTAL (MIcroarrays for the Detection of Toxic ALgae) is to demonstrate the applicability of microarrays to monitor harmful algae across a broad range of ecological niches and toxic species responsible for harmful algal events. Water samples are collected from a series of sites used in national phytoplankton and biotoxin monitoring across Europe. The samples are filtered; rRNA is extracted, labelled with a fluorescent dye and applied to a microarray chip. The signal intensity from >120 probes previously spotted on the chip is measured and analysed. Preliminary results comparing microarray signal intensities with actual field counts are presented.Versión del edito

    Krill Excretion Boosts Microbial Activity in the Southern Ocean

    Get PDF
    Antarctic krill are known to release large amounts of inorganic and organic nutrients to the water column. Here we test the role of krill excretion of dissolved products in stimulating heterotrophic bacteria on the basis of three experiments where ammonium and organic excretory products released by krill were added to bacterial assemblages, free of grazers. Our results demonstrate that the addition of krill excretion products (but not of ammonium alone), at levels expected in krill swarms, greatly stimulates bacteria resulting in an order-of-magnitude increase in growth and production. Furthermore, they suggest that bacterial growth rate in the Southern Ocean is suppressed well below their potential by resource limitation. Enhanced bacterial activity in the presence of krill, which are major sources of DOC in the Southern Ocean, would further increase recycling processes associated with krill activity, resulting in highly efficient krill-bacterial recycling that should be conducive to stimulating periods of high primary productivity in the Southern Ocean.This research is a contribution to projects ICEPOS (REN2002-04165-CO3-O2) and ATOS (POL2006-00550/CTM), funded by the Spanish Ministry of Science and Innovation

    Airborne Microalgae: Insights, Opportunities and Challenges

    Get PDF
    Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concentration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment and possibly influence their deposition rates. This minireview presents a summary of these studies and traces the possible route, step-by-step, from established ecosystems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and environment, and the state-of-the-art techniques to detect and model airborne microalgae dispersal. More detailed studies on microalgae atmospheric-cycle, including for instance ice nucleation activity and transport simulations, are crucial for improving our understanding of microalgae ecology, identifying their interactions with the environment and preventing unwanted sanitary events or invasions

    Prymnesins: Toxic Metabolites of the Golden Alga, Prymnesium parvum Carter (Haptophyta)

    Get PDF
    Increasingly over the past century, seasonal fish kills associated with toxic blooms of Prymnesium parvum have devastated aquaculture and native fish, shellfish, and mollusk populations worldwide. Protracted blooms of P. parvum can result in major disturbances to the local ecology and extensive monetary losses. Toxicity of this alga is attributed to a collection of compounds known as prymnesins, which exhibit potent cytotoxic, hemolytic, neurotoxic and ichthyotoxic effects. These secondary metabolites are especially damaging to gill-breathing organisms and they are believed to interact directly with plasma membranes, compromising integrity by permitting ion leakage. Several factors appear to function in the activation and potency of prymnesins including salinity, pH, ion availability, and growth phase. Prymnesins may function as defense compounds to prevent herbivory and some investigations suggest that they have allelopathic roles. Since the last extensive review was published, two prymnesins have been chemically characterized and ongoing investigations are aimed at the purification and analysis of numerous other toxic metabolites from this alga. More information is needed to unravel the mechanisms of prymnesin synthesis and the significance of these metabolites. Such work should greatly improve our limited understanding of the physiology and biochemistry of P. parvum and how to mitigate its blooms

    Searching for DNA Lesions: Structural Evidence for Lower- and Higher-Affinity DNA Binding Conformations of Human Alkyladenine DNA Glycosylase

    Get PDF
    To efficiently repair DNA, human alkyladenine DNA glycosylase (AAG) must search the million-fold excess of unmodified DNA bases to find a handful of DNA lesions. Such a search can be facilitated by the ability of glycosylases, like AAG, to interact with DNA using two affinities: a lower-affinity interaction in a searching process and a higher-affinity interaction for catalytic repair. Here, we present crystal structures of AAG trapped in two DNA-bound states. The lower-affinity depiction allows us to investigate, for the first time, the conformation of this protein in the absence of a tightly bound DNA adduct. We find that active site residues of AAG involved in binding lesion bases are in a disordered state. Furthermore, two loops that contribute significantly to the positive electrostatic surface of AAG are disordered. Additionally, a higher-affinity state of AAG captured here provides a fortuitous snapshot of how this enzyme interacts with a DNA adduct that resembles a one-base loop.National Institutes of Health (U.S.) (grant no. P30-ES002109)National Institutes of Health (U.S.) (grant no. GM65337)National Institutes of Health (U.S.) (grant no. GM65337-03S2)National Institutes of Health (U.S.) (grant no. CA055042)National Institutes of Health (U.S.) (grant no. CA092584)Repligen Corporation (KIICR Graduate Fellowship
    corecore