73 research outputs found

    Investigating the source of Planck-detected AME: high resolution observations at 15 GHz

    Get PDF
    The Planck 28.5 GHz maps were searched for potential Anomalous Microwave Emission (AME) regions on the scale of ∼3∘\sim3^{\circ} or smaller, and several new regions of interest were selected. Ancillary data at both lower and higher frequencies were used to construct spectral energy distributions (SEDs), which seem to confirm an excess consistent with spinning dust models. Here we present higher resolution observations of two of these new regions with the Arcminute Microkelvin Imager Small Array (AMI SA) between 14 and 18 GHz to test for the presence of a compact (∼\sim10 arcmin or smaller) component. For AME-G107.1+5.2, dominated by the {\sc Hii} region S140, we find evidence for the characteristic rising spectrum associated with the either the spinning dust mechanism for AME or an ultra/hyper-compact \textsc{Hii} region across the AMI frequency band, however for AME-G173.6+2.8 we find no evidence for AME on scales of ∼2−10\sim 2-10 arcmin.Comment: 13 pages, 8 figures, 4 tables. Submitted to Advances in Astronomy AME Special Issu

    Cosmology from Cluster SZ and Weak Lensing Data

    Full text link
    Weak gravitational lensing and the Sunyaev-Zel'dovich effect provide complementary information on the composition of clusters of galaxies. Preliminary results from cluster SZ observations with the Very Small Array are presented. A Bayesian approach to combining this data with wide field lensing data is then outlined; this allows the relative probabilities of cluster models of varying complexity to be computed. A simple simulation is used to demonstrate the importance of cluster model selection in cosmological parameter determination.Comment: 4 pages, 4 figures, to appear in proceedings of XXXVIIth Rencontres de Moriond, "The Cosmological Model"; h-depebndence corrected, typos fixe

    Bayesian modelling of clusters of galaxies from multi-frequency pointed Sunyaev--Zel'dovich observations

    Full text link
    We present a Bayesian approach to modelling galaxy clusters using multi-frequency pointed observations from telescopes that exploit the Sunyaev--Zel'dovich effect. We use the recently developed MultiNest technique (Feroz, Hobson & Bridges, 2008) to explore the high-dimensional parameter spaces and also to calculate the Bayesian evidence. This permits robust parameter estimation as well as model comparison. Tests on simulated Arcminute Microkelvin Imager observations of a cluster, in the presence of primary CMB signal, radio point sources (detected as well as an unresolved background) and receiver noise, show that our algorithm is able to analyse jointly the data from six frequency channels, sample the posterior space of the model and calculate the Bayesian evidence very efficiently on a single processor. We also illustrate the robustness of our detection process by applying it to a field with radio sources and primordial CMB but no cluster, and show that indeed no cluster is identified. The extension of our methodology to the detection and modelling of multiple clusters in multi-frequency SZ survey data will be described in a future work.Comment: 12 pages, 7 figures, submitted to MNRA

    Maximum-likelihood astrometric geometry calibration of interferometric telescopes: application to the Very Small Array

    Get PDF
    Interferometers require accurate determination of the array configuration in order to produce reliable observations. A method is presented for finding the maximum-likelihood estimate of the telescope geometry, and of other instrumental parameters, astrometrically from the visibility timelines obtained from observations of celestial calibrator sources. The method copes systematically with complicated and unconventional antenna and array geometries, with electronic bandpasses that are different for each antenna radiometer, and with low signal-to-noise ratios for the calibrators. The technique automatically focusses on the geometry errors that are most significant for astronomical observation. We apply this method to observations made with the Very Small Array and constrain some 450 telescope parameters, such as the antenna positions, effective observing frequencies and correlator amplitudes and phase shifts; this requires only ~ 1 h of CPU time on a typical workstation.Comment: 9 pages, 8 figures, submitted to MNRA

    Mass and pressure constraints on galaxy clusters from interferometric SZ observations

    Full text link
    Following on our previous study of an analytic parametric model to describe the baryonic and dark matter distributions in clusters of galaxies with spherical symmetry, we perform an SZ analysis of a set of simulated clusters and present their mass and pressure profiles. The simulated clusters span a wide range in mass, 2.0 x 10^14 Msun < M200 < 1.0 x 10^15Msun, and observations with the Arcminute Microkelvin Imager (AMI) are simulated through their Sunyaev- Zel'dovich (SZ) effect. We assume that the dark matter density follows a Navarro, Frenk and White (NFW) profile and that the gas pressure is described by a generalised NFW (GNFW) profile. By numerically exploring the probability distributions of the cluster parameters given simulated interferometric SZ data in the context of Bayesian methods, we investigate the capability of this model and analysis technique to return the simulated clusters input quantities. We show that considering the mass and redshift dependency of the cluster halo concentration parameter is crucial in obtaining an unbiased cluster mass estimate and hence deriving the radial profiles of the enclosed total mass and the gas pressure out to r200.Comment: 5 pages, 2 tables, 3 figure

    Two Years of Monitoring of Blazars with the OVRO 40 m Telescope at 15 GHz in Support of Fermi-GST

    Get PDF
    We have continued our monitoring program of ~1200 sources with the Owens Valley Radio Observatory 40 m Telescope. Most of the sources are part of the Candidate Gamma-Ray Blazar Survey (CGRaBS). We have also been observing Targets Of Opportunity triggered by gamma-ray detections and participating in multiwalength campaigns lead by Fermi-GST. Regular program sources are observed twice a week and have been observed for ~24 months at 15 GHz. We use these light curves to study the radio variability and its relation with optical properties. A significant fraction of the bright AGNs detected by Fermi-GST are in our program, which will allow for correlations between the radio and gamma-ray behavior for a number of sources. Here we present some example light curves, describe the tools used to study the variability and present some preliminary variability statistics for the sample

    High resolution AMI Large Array imaging of spinning dust sources: spatially correlated 8 micron emission and evidence of a stellar wind in L675

    Full text link
    We present 25 arcsecond resolution radio images of five Lynds Dark Nebulae (L675, L944, L1103, L1111 & L1246) at 16 GHz made with the Arcminute Microkelvin Imager (AMI) Large Array. These objects were previously observed with the AMI Small Array to have an excess of emission at microwave frequencies relative to lower frequency radio data. In L675 we find a flat spectrum compact radio counterpart to the 850 micron emission seen with SCUBA and suggest that it is cm-wave emission from a previously unknown deeply embedded young protostar. In the case of L1246 the cm-wave emission is spatially correlated with 8 micron emission seen with Spitzer. Since the MIR emission is present only in Spitzer band 4 we suggest that it arises from a population of PAH molecules, which also give rise to the cm-wave emission through spinning dust emission.Comment: accepted MNRA

    Sunyaev-Zel'dovich observations of galaxy clusters out to the virial radius with the Arcminute Microkelvin Imager

    Get PDF
    We present observations using the Small Array of the Arcminute Microkelvin Imager (AMI; 14-18 GHz) of four Abell and three MACS clusters spanning 0.171-0.686 in redshift. We detect Sunyaev-Zel'dovich (SZ) signals in five of these without any attempt at source subtraction, although strong source contamination is present. With radio-source measurements from high-resolution observations, and under the assumptions of spherical β\beta-model, isothermality and hydrostatic equilibrium, a Bayesian analysis of the data in the visibility plane detects extended SZ decrements in all seven clusters over and above receiver noise, radio sources and primary CMB imprints. Bayesian evidence ratios range from 10^{11}:1 to 10^{43}:1 for six of the clusters and 3000:1 for one with substantially less data than the others. We present posterior probability distributions for, e.g., total mass and gas fraction averaged over radii internal to which the mean overdensity is 1000, 500 and 200, r_200 being the virial radius. Reaching r_200 involves some extrapolation for the nearer clusters but not for the more-distant ones. We find that our estimates of gas fraction are low (compared with most in the literature) and decrease with increasing radius. These results appear to be consistent with the notion that gas temperature in fact falls with distance (away from near the cluster centre) out to the virial radius.Comment: 18 pages, 10 figures, submitted to MNRAS (updated authors and fixed Figure 1
    • …
    corecore