175 research outputs found

    Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes

    Get PDF
    The adenosine monophosphate (AMP)–activated protein kinase (AMPK) has a crucial role in maintaining cellular energy homeostasis. This study shows that human and mouse T lymphocytes express AMPKα1 and that this is rapidly activated in response to triggering of the T cell antigen receptor (TCR). TCR stimulation of AMPK was dependent on the adaptors LAT and SLP76 and could be mimicked by the elevation of intracellular Ca2+ with Ca2+ ionophores or thapsigargin. AMPK activation was also induced by energy stress and depletion of cellular adenosine triphosphate (ATP). However, TCR and Ca2+ stimulation of AMPK required the activity of Ca2+–calmodulin-dependent protein kinase kinases (CaMKKs), whereas AMPK activation induced by increased AMP/ATP ratios did not. These experiments reveal two distinct pathways for the regulation of AMPK in T lymphocytes. The role of AMPK is to promote ATP conservation and production. The rapid activation of AMPK in response to Ca2+ signaling in T lymphocytes thus reveals that TCR triggering is linked to an evolutionally conserved serine kinase that regulates energy metabolism. Moreover, AMPK does not just react to cellular energy depletion but also anticipates it

    Lagoonal littorinids: Shell shape and speciation

    Get PDF
    Variables related to shell shape have been measured in littorinids from brackish lagoons and coastal sites. After removal of size related effects, the data were analyzed using multivariate techniques. On Canonical Variate 1 there was good separation of the shells of the lagoonal animals from those of animals from the coast and a tidal lagoon. The former, for example, had lighter, and therefore thinner, shells for any given shell size and a smaller jugosity of the aperture lip. The lagoonal shells from Golam Head and the coastal animals from Robin Hood's Bay could each be separated clearly from the other samples. Although there are clear morphometric differences in the shells, it is not possible without appropriate breeding experiments to raise the lagoonal animals from L. saxatilis var. lagunae (L. tenebrosa) to species status. The importance of conserving lagoonal habitats is considered in terms of the preservation of biodiversit

    Is Human Cytomegalovirus Infection Associated with Hypertension? The United States National Health and Nutrition Examination Survey 1999–2002

    Get PDF
    PURPOSE: Recent studies have implicated the human cytomegalovirus (HCMV) as a possible pathogen for causing hypertension. We aimed to study the association between HCMV infection and hypertension in the United States National Health and Nutrition Examination Survey (NHANES). METHODS: We analyzed data on 2979 men and 3324 women in the NHANES 1999-2002. We included participants aged 16-49 years who had valid data on HCMV infection and hypertension. RESULTS: Of the participants, 54.7% had serologic evidence of HCMV infection and 17.5% had hypertension. There were ethnic differences in the prevalence of HCMV infection (P<0.001) and hypertension (P<0.001). The prevalence of both increased with age (P<0.001). Before adjustment, HCMV seropositivity was significantly associated with hypertension in women (OR = 1.63, 95% CI = 1.25-2.13, P = 0.001) but not in men. After adjustment for race/ethnicity, the association between HCMV seropositivity and hypertension in women remained significant (OR = 1.55, 95% CI = 1.20-2.02, P = 0.002). Further adjustment for body mass index, diabetes status and hypercholesterolemia attenuated the association (OR = 1.44, 95% CI = 1.10-1.90, P = 0.010). However, after adjusting for age, the association was no longer significant (OR = 1.24, 95% CI = 0.91-1.67, P = 0.162). CONCLUSIONS: In this nationally representative population-based survey, HCMV seropositivity is associated with hypertension in women in the NHANES population. This association is largely explained by the association of hypertension with age and the increase in past exposure to HCMV with age.published_or_final_versio

    Ecological genetics in the North Atlantic: environmental gradients and adaptation at specific loci

    Get PDF
    The North Atlantic intertidal community provides a rich set of organismal and environmental material for the study of ecological genetics. Clearly defined environmental gradients exist at multiple spatial scales: there are broad latitudinal trends in temperature, meso-scale changes in salinity along estuaries, and smaller scale gradients in desiccation and temperature spanning the intertidal range. The geology and geography of the American and European coasts provide natural replication of these gradients, allowing for population genetic analyses of parallel adaptation to environmental stress and heterogeneity. Statistical methods have been developed that provide genomic neutrality tests of population differentiation and aid in the process of candidate gene identification. In this paper, we review studies of marine organisms that illustrate associations between an environmental gradient and specific genetic markers. Such highly differentiated markers become candidate genes for adaptation to the environmental factors in question, but the functional significance of genetic variants must be comprehensively evaluated. We present a set of predictions about locus-specific selection across latitudinal, estuarine, and intertidal gradients that are likely to exist in the North Atlantic. We further present new data and analyses that support and contradict these simple selection models. Some taxa show pronounced clinal variation at certain loci against a background of mild clinal variation at many loci. These cases illustrate the procedures necessary for distinguishing selection driven by internal genomic vs. external environmental factors. We suggest that the North Atlantic intertidal community provides a model system for identifying genes that matter in ecology due to the clarity of the environmental stresses and an extensive experimental literature on ecological function. While these organisms are typically poor genetic and genomic models, advances in comparative genomics have provided access to molecular tools that can now be applied to taxa with well-defined ecologies. As many of the organisms we discuss have tight physiological limits driven by climatic factors, this synthesis of molecular population genetics with marine ecology could provide a sensitive means of assessing evolutionary responses to climate change

    Hospitalization for permanent pacemaker implantation in the context of isolated sinus node dysfunction is associated with increased mortality compared with an outpatient strategy

    Get PDF
    Background: Permanent pacemaker (PPM) implantation is a well-established treatment for symptomatic sinus node dysfunction (SND). The optimal timing of this intervention is unclear, with atrioventricular blocks often prioritized in resource stressed waiting lists due to mortality concerns. Methods: Mortality data was compared between patients receiving elective outpatient (OP) PPM implantation, and those presenting to hospital for urgent inpatient (IP) management for symptomatic SND. Survival analysis was conducted using Kaplan-Meier plots and compared using the log-rank test. Univariable and multivariable Cox regression, as well as propensity score matching analyses were performed to assess the prognostic effect on 30-day and 1-year all-cause mortality of inpatient implant. Results: Of the 1269 patients identified with isolated SND, 740 (58%) had PPMs implanted on an OP and 529 (42%) on an IP basis. Mortality was significantly worse in patients where management was driven by hospital admission on an urgent basis (Log-Rank χ2 = 21.6, p < 0.001) and remained an independent predictor of 1-year all-cause mortality (HR 3.40, 95% CI 1.97–5.86, p < 0.001) on multivariable analysis. Conclusions: SND is predominantly a disease associated with ageing and comorbid populations, where avoidance of deconditioning, hospitalization acquired infections, and polypharmacy is advantageous. Admission avoidance is therefore the preferable strategy

    Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation

    Get PDF
    NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1–6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12–US21; a genetic arrangement, which is suggestive of an ‘accordion’ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family

    Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers

    Get PDF
    Speciation requires the acquisition of reproductive isolation, and the circumstances under which this could evolve are of great interest. Are new species formed after the acquisition of generalized incompatibility arising between physically separated populations, or may they arise as a result of the action of disruptive selection beginning with the divergence of a rather restricted set of gene loci? Here we apply the technique of amplified fragment length polymorphism (AFLP) analysis to an intertidal snail whose populations display a cline in shell shape across vertical gradients on rocky shores. We compare the FST values for 306 AFLP loci with the distribution of FST estimated from a simulation model using values of mutation and migration derived from the data. We find that about 5% of these loci show greater differentiation than expected, providing evidence of the effects of selection across the cline, either direct or indirect through linkage. This is consistent with expectations from nonallopatric speciation models that propose an initial divergence of a small part of the genome driven by strong disruptive selection while divergence at other loci is prevented by gene flow. However, the pattern could also be the result of differential introgression after secondary contact

    AMP-Activated Protein Kinase:A Target for Drugs both Ancient and Modern

    Get PDF
    The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status. It is activated, by a mechanism requiring the tumor suppressor LKB1, by metabolic stresses that increase cellular ADP:ATP and/or AMP:ATP ratios. Once activated, it switches on catabolic pathways that generate ATP, while switching off biosynthetic pathways and cell-cycle progress. These effects suggest that AMPK activators might be useful for treatment and/or prevention of type 2 diabetes and cancer. Indeed, AMPK is activated by the drugs metformin and salicylate, the latter being the major breakdown product of aspirin. Metformin is widely used to treat diabetes, while there is epidemiological evidence that both metformin and aspirin provide protection against cancer. We review the mechanisms of AMPK activation by these and other drugs, and by natural products derived from traditional herbal medicines
    • …
    corecore