146 research outputs found

    Comparison of different CT metal artifact reduction strategies for standard titanium and carbon-fiber reinforced polymer implants in sheep cadavers

    Full text link
    BACKGROUND CT artifacts induced by orthopedic implants can limit image quality and diagnostic yield. As a number of different strategies to reduce artifact extent exist, the aim of this study was to systematically compare ex vivo the impact of different CT metal artifact reduction (MAR) strategies on spine implants made of either standard titanium or carbon-fiber-reinforced-polyetheretherketone (CFR-PEEK). METHODS Spine surgeons fluoroscopically-guided prepared six sheep spine cadavers with pedicle screws and rods of either titanium or CFR-PEEK. Samples were subjected to single- and dual-energy (DE) CT-imaging. Different tube voltages (80, DE mixed, 120 and tin-filtered 150 kVp) at comparable radiation dose and iterative reconstruction versus monoenergetic extrapolation (ME) techniques were compared. Also, the influence of image reconstruction kernels (soft vs. bone tissue) was investigated. Qualitative (Likert scores) and quantitative parameters (attenuation changes induced by implant artifact, implant diameter and image noise) were evaluated by two independent radiologists. Artifact degree of different MAR-strategies and implant materials were compared by multiple ANOVA analysis. RESULTS CFR-PEEK implants induced markedly less artifacts than standard titanium implants (p < .001). This effect was substantially larger than any other tested MAR technique. Reconstruction algorithms had small impact in CFR-PEEK implants and differed significantly in MAR efficiency (p < .001) with best MAR performance for DECT ME 130 keV (bone kernel). Significant differences in image noise between reconstruction kernels were seen (p < .001) with minor impact on artifact degree. CONCLUSIONS CFR-PEEK spine implants induce significantly less artifacts than standard titanium compositions with higher MAR efficiency than any alternate scanning or image reconstruction strategy. DECT ME 130 keV image reconstructions showed least metal artifacts. Reconstruction kernels primarily modulate image noise with minor impact on artifact degree

    Ultrastrong coupling of electrically pumped near-infrared exciton-polaritons in high mobility polymers

    Get PDF
    This research was financially supported by the European Research Council under the European Union's Seventh Framework Programme (FP/2007- 2013)/ERC Grant Agreement No. 306298 (EN -LUMINATE) and under the European Union’s Horizon 2020 Framework Programme (FP/2014- 2020)/ERC Grant Agreement No. 640012 (ABLASE) and by the EPSRC Programme Grant EP/P030017/1. L.T. thanks EPSRC for support through the CM -DTC (EP/L015110/1).Exciton-polaritons are quasiparticles with hybrid light–matter properties that may be used in new optoelectronic devices. Here, electrically pumped ultrastrongly coupled exciton-polaritons in a high-mobility donor–acceptor copolymer are demonstrated by integrating a light-emitting field-effect transistor into a metal-clad microcavity. Near-infrared electroluminescence is emitted exclusively from the lower polariton branch, which indicates efficient relaxation. A coupling strength of 24% of the exciton transition energy implies the system is in the ultrastrong coupling regime with a narrow and almost angle-independent emission. The lower polariton energy, which can be adjusted by the cavity detuning, strongly influences the external quantum efficiency of the device. Driving the transistors at ambipolar current densities of up to 4000 A cm−2 does not decrease the coupling strength or polariton emission efficiency. Cavity-integrated light-emitting field-effect transistors thus represent a versatile platform for polariton emission and polaritonic devices.Publisher PDFPeer reviewe

    A prospective cohort study about the effect of repeated living high and working higher on cerebral autoregulation in unacclimatized lowlanders

    Full text link
    Cerebral autoregulation (CA) is impaired during acute high-altitude (HA) exposure, however, effects of temporarily living high and working higher on CA require further investigation. In 18 healthy lowlanders (11 women), we hypothesized that the cerebral autoregulation index (ARI) assessed by the percentage change in middle cerebral artery peak blood velocity (Δ%MCAv)/percentage change in mean arterial blood pressure (Δ%MAP) induced by a sit-to-stand maneuver, is (i) reduced on Day1 at 5050 m compared to 520 m, (ii) is improved after 6 days at 5050 m, and (iii) is less impaired during re-exposure to 5050 m after 7 days at 520 m compared to Cycle1. Participants spent 4-8 h/day at 5050 m and slept at 2900 m similar to real-life working shifts. High/low ARI indicate impaired/intact CA, respectively. With the sit-to-stand at 520 m, mean (95% CI) in ΔMAP and ΔMCAv were − 26% (− 41 to − 10) and − 13% (− 19 to − 7), P < 0.001 both comparisons; mean ± SD in ARI was 0.58 ± 2.44Δ%/Δ%, respectively. On Day1 at 5050 m, ARI worsened compared to 520 m (3.29 ± 2.42Δ%/Δ%), P = 0.006 but improved with acclimatization (1.44 ± 2.43Δ%/Δ%, P = 0.039). ARI was less affected during re-exposure to 5050 m (1.22 ± 2.52Δ%/Δ%, P = 0.027 altitude-induced change between sojourns). This study showed that CA (i) is impaired during acute HA exposure, (ii) improves with living high, working higher and (iii) is ameliorated during re-exposure to HA

    Drug sensitivity profiling of 3D tumor tissue cultures in the pediatric precision oncology program INFORM

    Full text link
    The international precision oncology program INFORM enrolls relapsed/refractory pediatric cancer patients for comprehensive molecular analysis. We report a two-year pilot study implementing ex vivo drug sensitivity profiling (DSP) using a library of 75-78 clinically relevant drugs. We included 132 viable tumor samples from 35 pediatric oncology centers in seven countries. DSP was conducted on multicellular fresh tumor tissue spheroid cultures in 384-well plates with an overall mean processing time of three weeks. In 89 cases (67%), sufficient viable tissue was received; 69 (78%) passed internal quality controls. The DSP results matched the identified molecular targets, including BRAF, ALK, MET, and TP53 status. Drug vulnerabilities were identified in 80% of cases lacking actionable (very) high-evidence molecular events, adding value to the molecular data. Striking parallels between clinical courses and the DSP results were observed in selected patients. Overall, DSP in clinical real-time is feasible in international multicenter precision oncology programs

    The impact of oxygen on the transcriptome of recombinant S. cerevisiae and P. pastoris - a comparative analysis

    Get PDF
    Background: Saccharomyces cerevisiae and Pichia pastoris are two of the most relevant microbial eukaryotic platforms for the production of recombinant proteins. Their known genome sequences enabled several transcriptomic profiling studies under many different environmental conditions, thus mimicking not only perturbations and adaptations which occur in their natural surroundings, but also in industrial processes. Notably, the majority of such transcriptome analyses were performed using non-engineered strains. In this comparative study, the gene expression profiles of S. cerevisiae and P. pastoris, a Crabtree positive and Crabtree negative yeast, respectively, were analyzed for three different oxygenation conditions (normoxic, oxygen-limited and hypoxic) under recombinant protein producing conditions in chemostat cultivations. Results: The major differences in the transcriptomes of S. cerevisiae and P. pastoris were observed between hypoxic and normoxic conditions, where the availability of oxygen strongly affected ergosterol biosynthesis, central carbon metabolism and stress responses, particularly the unfolded protein response. Steady state conditions under low oxygen set-points seemed to perturb the transcriptome of S. cerevisiae to a much lesser extent than the one of P. pastoris, reflecting the major tolerance of the baker's yeast towards oxygen limitation, and a higher fermentative capacity. Further important differences were related to Fab production, which was not significantly affected by oxygen availability in S. cerevisiae, while a clear productivity increase had been previously reported for hypoxically grown P. pastoris. Conclusions: The effect of three different levels of oxygen availability on the physiology of P. pastoris and S. cerevisiae revealed a very distinct remodelling of the transcriptional program, leading to novel insights into the different adaptive responses of Crabtree negative and positive yeasts to oxygen availability. Moreover, the application of such comparative genomic studies to recombinant hosts grown in different environments might lead to the identification of key factors for efficient protein production

    Aquaglyceroporin-null trypanosomes display glycerol transport defects and respiratory-inhibitor sensitivity

    Get PDF
    Aquaglyceroporins (AQPs) transport water and glycerol and play important roles in drug-uptake in pathogenic trypanosomatids. For example, AQP2 in the human-infectious African trypanosome, Trypanosoma brucei gambiense, is responsible for melarsoprol and pentamidine-uptake, and melarsoprol treatment-failure has been found to be due to AQP2-defects in these parasites. To further probe the roles of these transporters, we assembled a T. b. brucei strain lacking all three AQP-genes. Triple-null aqp1-2-3 T. b. brucei displayed only a very moderate growth defect in vitro, established infections in mice and recovered effectively from hypotonic-shock. The aqp1-2-3 trypanosomes did, however, display glycerol uptake and efflux defects. They failed to accumulate glycerol or to utilise glycerol as a carbon-source and displayed increased sensitivity to salicylhydroxamic acid (SHAM), octyl gallate or propyl gallate; these inhibitors of trypanosome alternative oxidase (TAO) can increase intracellular glycerol to toxic levels. Notably, disruption of AQP2 alone generated cells with glycerol transport defects. Consistent with these findings, AQP2-defective, melarsoprol-resistant clinical isolates were sensitive to the TAO inhibitors, SHAM, propyl gallate and ascofuranone, relative to melarsoprol-sensitive reference strains. We conclude that African trypanosome AQPs are dispensable for viability and osmoregulation but they make important contributions to drug-uptake, glycerol-transport and respiratory-inhibitor sensitivity. We also discuss how the AQP-dependent inverse sensitivity to melarsoprol and respiratory inhibitors described here might be exploited

    The Myxobacterial Antibiotic Myxovalargin: Biosynthesis, Structural Revision, Total Synthesis, and Molecular Characterization of Ribosomal Inhibition

    Get PDF
    Resistance of bacterial pathogens against antibiotics is declared by WHO as a major global health threat. As novel antibacterial agents are urgently needed, we re-assessed the broad-spectrum myxobacterial antibiotic myxovalargin and found it to be extremely potent against Mycobacterium tuberculosis. To ensure compound supply for further development, we studied myxovalargin biosynthesis in detail enabling production via fermentation of a native producer. Feeding experiments as well as functional genomics analysis suggested a structural revision, which was eventually corroborated by the development of a concise total synthesis. The ribosome was identified as the molecular target based on resistant mutant sequencing, and a cryo-EM structure revealed that myxovalargin binds within and completely occludes the exit tunnel, consistent with a mode of action to arrest translation during a late stage of translation initiation. These studies open avenues for structure-based scaffold improvement toward development as an antibacterial agent

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Position paper on screening for breast cancer by the European Society of Breast Imaging (EUSOBI) and 30 national breast radiology bodies from Austria, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Israel, Lithuania, Moldova, The Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Spain, Sweden, Switzerland and Turkey.

    Get PDF
    UNLABELLED: EUSOBI and 30 national breast radiology bodies support mammography for population-based screening, demonstrated to reduce breast cancer (BC) mortality and treatment impact. According to the International Agency for Research on Cancer, the reduction in mortality is 40 % for women aged 50-69 years taking up the invitation while the probability of false-positive needle biopsy is <1 % per round and overdiagnosis is only 1-10 % for a 20-year screening. Mortality reduction was also observed for the age groups 40-49 years and 70-74 years, although with "limited evidence". Thus, we firstly recommend biennial screening mammography for average-risk women aged 50-69 years; extension up to 73 or 75 years, biennially, is a second priority, from 40-45 to 49 years, annually, a third priority. Screening with thermography or other optical tools as alternatives to mammography is discouraged. Preference should be given to population screening programmes on a territorial basis, with double reading. Adoption of digital mammography (not film-screen or phosphor-plate computer radiography) is a priority, which also improves sensitivity in dense breasts. Radiologists qualified as screening readers should be involved in programmes. Digital breast tomosynthesis is also set to become "routine mammography" in the screening setting in the next future. Dedicated pathways for high-risk women offering breast MRI according to national or international guidelines and recommendations are encouraged. KEY POINTS: • EUSOBI and 30 national breast radiology bodies support screening mammography. • A first priority is double-reading biennial mammography for women aged 50-69 years. • Extension to 73-75 and from 40-45 to 49 years is also encouraged. • Digital mammography (not film-screen or computer radiography) should be used. • DBT is set to become "routine mammography" in the screening setting in the next future
    corecore