540 research outputs found
DIRAC framework evaluation for the -LAT and CTA experiments
DIRAC (Distributed Infrastructure with Remote Agent Control) is a general
framework for the management of tasks over distributed heterogeneous computing
environments. It has been originally developed to support the production
activities of the LHCb (Large Hadron Collider Beauty) experiment and today is
extensively used by several particle physics and biology communities. Current
( Large Area Telescope -- LAT) and planned (Cherenkov Telescope Array --
CTA) new generation astrophysical/cosmological experiments, with very large
processing and storage needs, are currently investigating the usability of
DIRAC in this context. Each of these use cases has some peculiarities:
-LAT will interface DIRAC to its own workflow system to allow the access
to the grid resources, while CTA is using DIRAC as workflow management system
for Monte Carlo production and analysis on the grid. We describe the prototype
effort that we lead toward deploying a DIRAC solution for some aspects of
-LAT and CTA needs.Comment: proceedings to CHEP 2013 conference : http://www.chep2013.org
Measurement of Ds ± production asymmetry in pp collisions at √s=7 and 8 TeV
Abstract: The inclusive D± s production asymmetry is measured in pp collisions collected by the LHCb experiment at centre-of-mass energies of √ s = 7 and 8 TeV. Promptly produced D± s mesons are used, which decay as D± s → φπ±, with φ → K+K−. The measurement is performed in bins of transverse momentum, pT, and rapidity, y, covering the range 2.5 < pT < 25.0 GeV/c and 2.0 < y < 4.5. No kinematic dependence is observed. Evidence of nonzero D± s production asymmetry is found with a significance of 3.3 standard deviations
Quantum numbers of the X (3872 ) state and orbital angular momentum in its ρ0J /ψ decay
Angular correlations in B+ → X(3872)K+ decays, with X(3872) → ρ 0J/ψ, ρ 0 → π +π − and J/ψ → µ +µ −, are used to measure orbital angular momentum contributions and to determine the J P C value of the X(3872) meson. The data correspond to an integrated luminosity of 3.0 fb−1 of proton-proton collisions collected with the LHCb detector. This determination, for the first time performed without assuming a value for the orbital angular momentum, confirms the quantum numbers to be J P C = 1++. The X(3872) is found to decay predominantly through S wave and an upper limit of 4% at 95% C.L. is set on the D-wave contribution
Search for beautiful tetraquarks in the ϒ(1S)μ + μ − invariant-mass spectrum
Abstract: The Υ(1S)µ +µ − invariant-mass distribution is investigated for a possible exotic meson state composed of two b quarks and two b quarks, Xbbbb . The analysis is based on a data sample of pp collisions recorded with the LHCb detector at centre-of-mass energies √ s = 7, 8 and 13 TeV, corresponding to an integrated luminosity of 6.3 fb−1 . No significant excess is found, and upper limits are set on the product of the production cross-section and the branching fraction as functions of the mass of the Xbbbb state. The limits are set in the fiducial volume where all muons have pseudorapidity in the range [2.0, 5.0], and the Xbbbb state has rapidity in the range [2.0, 4.5] and transverse momentum less than 15 GeV/c. Keywords: B physics, Exotics, Hadron-Hadron scattering (experiments), Heavy quark productio
Search for lepton-flavour-violating decays of Higgs-like bosons
A search is presented for a Higgs-like boson with mass in the range 45 to 195 GeV/c2 decaying into a muon and a tau lepton. The dataset consists of proton-proton interactions at a centre-of-mass energy of 8 TeV, collected by the LHCb experiment, corresponding to an integrated luminosity of 2 fb−1 . The tau leptons are reconstructed in both leptonic and hadronic decay channels. An upper limit on the production cross-section multiplied by the branching fraction at 95% confidence level is set and ranges from 22 pb for a boson mass of 45 GeV/c2 to 4 pb for a mass of 195 GeV/c2
Measurement of the forward Z boson production cross-section in pp collisions at TeV
A measurement of the production cross-section of Z bosons in pp collisions at TeV is presented using dimuon and dielectron final states in LHCb data. The cross-section is measured for leptons with pseudorapidities in the range , transverse momenta GeV and dilepton invariant mass in the range GeV. The integrated cross-section from averaging the two final states is \begin{equation*}\sigma_{\text{Z}}^{\ell\ell} = 194.3 \pm 0.9 \pm 3.3 \pm 7.6\text{ pb,}\end{equation*} where the first uncertainty is statistical, the second is due to systematic effects, and the third is due to the luminosity determination. In addition, differential cross-sections are measured as functions of the Z boson rapidity, transverse momentum and the angular variable
Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires
The production of tt‾ , W+bb‾ and W+cc‾ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓν , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of , and is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 0.02 \mbox{fb}^{-1}. The bosons are reconstructed in the decays , where denotes muon or electron, while the and quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions
Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era
The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to 2×1034
cm−2s−1, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe b → sl+l−and b → dl+l− transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of B(B0 → μ+μ−)/B(Bs → μ+μ−). Probing charm CP violation at the 10−5 level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier
LHCb upgrade software and computing : technical design report
This document reports the Research and Development activities that are carried out in the software and computing domains in view of the upgrade of the LHCb experiment. The implementation of a full software trigger implies major changes in the core software framework, in the event data model, and in the reconstruction algorithms. The increase of the data volumes for both real and simulated datasets requires a corresponding scaling of the distributed computing infrastructure. An implementation plan in both domains is presented, together with a risk assessment analysis
Measurement of the (eta c)(1S) production cross-section in proton-proton collisions via the decay (eta c)(1S) -> p(p)over-bar
The production of the state in proton-proton collisions is probed via its decay to the final state with the LHCb detector, in the rapidity range GeV/c. The cross-section for prompt production of mesons relative to the prompt cross-section is measured, for the first time, to be at a centre-of-mass energy TeV using data corresponding to an integrated luminosity of 0.7 fb, and at TeV using 2.0 fb. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the and decays to the final state. In addition, the inclusive branching fraction of -hadron decays into mesons is measured, for the first time, to be , where the third uncertainty includes also the uncertainty on the inclusive branching fraction from -hadron decays. The difference between the and meson masses is determined to be MeV/c.The production of the state in proton-proton collisions is probed via its decay to the final state with the LHCb detector, in the rapidity range . The cross-section for prompt production of mesons relative to the prompt cross-section is measured, for the first time, to be at a centre-of-mass energy using data corresponding to an integrated luminosity of 0.7 fb , and at using 2.0 fb . The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the and decays to the final state. In addition, the inclusive branching fraction of -hadron decays into mesons is measured, for the first time, to be , where the third uncertainty includes also the uncertainty on the inclusive branching fraction from -hadron decays. The difference between the and meson masses is determined to be .The production of the state in proton-proton collisions is probed via its decay to the final state with the LHCb detector, in the rapidity range GeV/c. The cross-section for prompt production of mesons relative to the prompt cross-section is measured, for the first time, to be at a centre-of-mass energy TeV using data corresponding to an integrated luminosity of 0.7 fb, and at TeV using 2.0 fb. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the and decays to the final state. In addition, the inclusive branching fraction of -hadron decays into mesons is measured, for the first time, to be , where the third uncertainty includes also the uncertainty on the inclusive branching fraction from -hadron decays. The difference between the and meson masses is determined to be MeV/c
- …
