64 research outputs found

    Surfactant properties of atmospheric and model humic‐like substances (HULIS)

    Get PDF
    Surface‐active organics such as humic‐like substances (HULIS) are abundant in aerosol particles and can lower the surface tension of cloud droplets forming on secondary organic and biomass burning aerosols. How fast is the diffusion of these species, relative to the time scale of cloud droplet growth? Here we report surface tension measurements of solutions containing HULIS extracted from smoke and pollution aerosol particles as well those of molecular weight‐fractionated aquatic fulvic acids. Diffusion coefficients are estimated based on the Gibbs adsorption isotherms. The results suggest that HULIS diffusion to the surface of forming droplets is typically more rapid than the time scale of droplet growth so that cloud microphysical properties are affected

    Non-chemical Control of Root Parasitic Weeds with Biochar

    Get PDF
    This study tested whether soil-applied biochar can impact the seed germination and attachment of root parasitic weeds. Three hypotheses were evaluated: (i) biochar adsorbs host-exuded signaling molecules; (ii) biochar activates plants’ innate system-wide defenses against invasion by the parasite; and (iii) biochar has a systemic influence on the amount of seed germination stimulant produced or released by the host plant. Three types of experiments were performed: (I) pot trials with tomato (Solanum lycopersicum) infested with Phelipanche aegyptiaca PERS. (Egyptian broomrape) and three different types of biochar at concentrations ranging from 0 to 1.5% weight, wherein tomato plant biomass, P. aegyptiaca biomass, and number of P. aegyptiaca-tomato root attachments were quantified; (II) split-root biochar/no-biochar experiments under hydroponic growing conditions performed in polyethylene bags with tomato plant rootings, wherein P. aegyptiaca seed germination percentage and radicle attachment numbers were quantified; and (III) germination trials, wherein the effect of biochar adsorption of GR-24 (artificial germination stimulant) on P. aegyptiaca seed germination was quantified. Addition of biochar to the pot soil (Experiment I) resulted in lower levels of P. aegyptiaca infection in the tomato plants, mainly through a decrease in the number of P. aegyptiaca attachments. This led to improved tomato plant growth. In Experiment II, P. aegyptiaca seed germination percentage decreased in the biochar-treated root zone as compared with the no-biochar control root zone; P. aegyptiaca radicle attachment numbers decreased accordingly. This experiment showed that biochar did not induce a systemic change in the activity of the stimulant molecules exuded by the tomato roots, toxicity to the radicles, or a change in the ability of the radicles to penetrate the tomato roots. The major cause for the decrease in germination percentage was physical adsorption of the stimulant molecule by the biochar (Experiment III). Adding biochar to soil to reduce infections by root parasitic weeds is an innovative means of control with the potential to become an important strategy both for non-chemical treatment of this family of pests, and for enhancing the economic feasibility of the pyrolysis/biochar platform. This platform is often viewed as one of a handful of credible strategies for helping to mitigate climate change

    The effect of biochar on plant diseases: what should we learn while designing biochar substrates?

    Get PDF
    The increasing demand for soilless substrates and rising environmental concerns about the use of non-renewable resources such as peat has led to the search for alternative constituents of growing mixtures for containerized plants. In this report we reviewed the works concerning biochar as constituent of growing media, targeting its influence on plant growth and plant disease. Biochar mostly has positive or neutral influences on plant growth compared with peat media when present in concentrations higher than 25% (v:v). However, studies of biochar influence on plant disease reveals that while lower concentrations (≀1%) of biochar often suppressed several diseases, higher concentrations (≄3%) were mostly ineffective or induced plant disease. For use as horticultural peat replacement, it is recommended that biochar feedstocks and concentrations be standardized and the potential effect of biochar on plant disease be considered, so that growers can rely on consistent and reproducible biochars for desired effects

    The biochar effect: plant resistance to biotic stresses

    Get PDF
    Biochar (charcoal) is the solid co-product of pyrolysis, the thermal degradation of biomass in the absence of oxygen. Pyrolysis also yields gaseous and liquid biofuel products. There is a growing interest worldwide in the pyrolysis platform, for at least four reasons: (i) pyrolysis can be a source of renewable biofuels; (ii) many biomass waste materials can be treated by pyrolysis and thus converted into a fuel resource; (iii) long-term sequestration of carbon dioxide which originated in the atmosphere may result from adding biochar to soil; and (iv) biochar soil amendment contributes to improved soil fertility and crop productivity. Currently, however, very little biochar is utilized in agriculture, in part because its agronomic value in terms of crop response and soil health benefits have yet to be quantified, and because the mechanisms by which it improves soil fertility are poorly understood. The positive effects of biochar on crop productivity under conditions of extensive agriculture are frequently attributed to direct effects of biochar-supplied nutrients and to several other indirect effects, including increased water and nutrient retention, improvements in soil pH, increased soil cation exchange capacity, effects on P and S transformations and turnover, neutralization of phytotoxic compounds in the soil, improved soil physical properties, promotion of mycorrhizal fungi, and alteration of soil microbial populations and functions. Yet, the biochar effect is also evident under conditions of intensive production where many of these parameters are not limited. Biochar addition to soil alters microbial populations in the rhizosphere, albeit via mechanisms not yet understood, and may cause a shift towards beneficial microorganism populations that promote plant growth and resistance to biotic stresses. In addition to some scant evidence for biochar-induced plant protection against soilborne diseases, the induction of systemic resistance towards several foliar pathogens in three crop systems has been demonstrated. There are indications that biochar induces responses along both systemic acquired resistance (SAR) and induced systemic resistance (ISR) pathways, resulting in a broad spectrum controlling capacity in the canopy. This review examines the effects of biochar soil amendment on the different soil-plant-microbe interactions that may have a role in plant health. Improvement of plant responses to disease can be one of the benefits gained from applying biochar to soil

    Biochar-based fertilizer: Supercharging root membrane potential and biomass yield of rice

    Get PDF
    Biochar-based compound fertilizers (BCF) and amendments have proven to enhance crop yields and modify soil properties (pH, nutrients, organic matter, structure etc.) and are now in commercial production in China. While there is a good understanding of the changes in soil properties following biochar addition, the interactions within the rhizosphere remain largely unstudied, with benefits to yield observed beyond the changes in soil properties alone. We investigated the rhizosphere interactions following the addition of an activated wheat straw BCF at an application rates of 0.25% (g·g−1 soil), which could potentially explain the increase of plant biomass (by 67%), herbage N (by 40%) and P (by 46%) uptake in the rice plants grown in the BCF-treated soil, compared to the rice plants grown in the soil with conventional fertilizer alone. Examination of the roots revealed that micron and submicron-sized biochar were embedded in the plaque layer. BCF increased soil Eh by 85 mV and increased the potential difference between the rhizosphere soil and the root membrane by 65 mV. This increased potential difference lowered the free energy required for root nutrient accumulation, potentially explaining greater plant nutrient content and biomass. We also demonstrate an increased abundance of plant-growth promoting bacteria and fungi in the rhizosphere. We suggest that the redox properties of the biochar cause major changes in electron status of rhizosphere soils that drive the observed agronomic benefits

    Rationalizing the influence of small-molecule dopants on guanine crystal morphology

    Get PDF
    Many spectacular optical phenomena in animals are produced by reflective assemblies of guanine crystals. The crystals comprise planar H-bonded layers of π-stacked molecules with a high in-plane refractive index. By preferentially expressing the highly reflective π-stacked (100) crystal face and controlling its cross-sectional shape, organisms generate a diverse array of photonic superstructures. How is this precise control over crystal morphology achieved? Recently, it was found that biogenic guanine crystals are composites, containing high quantities of hypoxanthine and xanthine in a molecular alloy. Here, we crystallized guanine in the presence of these dopants and used computations to rationalize their influence on the crystal morphology and energy. Exceptional quantities of hypoxanthine are incorporated into kinetically favored solid solutions, indicating that fast crystallization kinetics underlies the heterogeneous compositions of biogenic guanine crystals. We find that weakening of H-bonding interactions by additive incorporation elongates guanine crystals along the stacking direction─the opposite morphology of biogenic crystals. However, by modulation of the strength of competing in-plane H-bonding interactions, additive incorporation strongly influences the cross-sectional shape of the crystals. Our results suggest that small-molecule H-bond disrupting additives may be simultaneously employed with π-stack blocking additives to generate reflective platelet crystal morphologies exhibited by organisms

    Soil: the great connector of our lives now and beyond COVID-19

    Get PDF
    Humanity depends on the existence of healthy soils, both for the production of food and for ensuring a healthy, biodiverse environment, among other functions. COVID-19 is threatening food availability in many places of the world due to the disruption of food chains, lack of workforce, closed borders and national lockdowns. As a consequence, more emphasis is being placed on local food production, which may lead to more intensive cultivation of vulnerable areas and to soil degradation. In order to increase the resilience of populations facing this pandemic and future global crises, transitioning to a paradigm that relies more heavily on local food production on soils that are carefully tended and protected through sustainable management is necessary. To reach this goal, the Intergovernmental Technical Panel on Soils (ITPS) of the Food and Agriculture Organization of the United Nations (FAO) recommends five active strategies: improved access to land, sound land use planning, sustainable soil management, enhanced research, and investments in education and extension

    Biochars in soils : towards the required level of scientific understanding

    Get PDF
    Key priorities in biochar research for future guidance of sustainable policy development have been identified by expert assessment within the COST Action TD1107. The current level of scientific understanding (LOSU) regarding the consequences of biochar application to soil were explored. Five broad thematic areas of biochar research were addressed: soil biodiversity and ecotoxicology, soil organic matter and greenhouse gas (GHG) emissions, soil physical properties, nutrient cycles and crop production, and soil remediation. The highest future research priorities regarding biochar's effects in soils were: functional redundancy within soil microbial communities, bioavailability of biochar's contaminants to soil biota, soil organic matter stability, GHG emissions, soil formation, soil hydrology, nutrient cycling due to microbial priming as well as altered rhizosphere ecology, and soil pH buffering capacity. Methodological and other constraints to achieve the required LOSU are discussed and options for efficient progress of biochar research and sustainable application to soil are presented.Peer reviewe

    Optimised and Rapid Pre-clinical Screening in the SOD1G93A Transgenic Mouse Model of Amyotrophic Lateral Sclerosis (ALS)

    Get PDF
    The human SOD1G93A transgenic mouse has been used extensively since its development in 1994 as a model for amyotrophic lateral sclerosis (ALS). In that time, a great many insights into the toxicity of mutant SOD1 have been gained using this and other mutant SOD transgenic mouse models. They all demonstrate a selective toxicity towards motor neurons and in some cases features of the pathology seen in the human disease. These models have two major drawbacks. Firstly the generation of robust preclinical data in these models has been highlighted as an area for concern. Secondly, the amount of time required for a single preclinical experiment in these models (3–4 months) is a hurdle to the development of new therapies. We have developed an inbred C57BL/6 mouse line from the original mixed background (SJLxC57BL/6) SOD1G93A transgenic line and show here that the disease course is remarkably consistent and much less prone to background noise, enabling reduced numbers of mice for testing of therapeutics. Secondly we have identified very early readouts showing a large decline in motor function compared to normal mice. This loss of motor function has allowed us to develop an early, sensitive and rapid screening protocol for the initial phases of denervation of muscle fibers, observed in this model. We describe multiple, quantitative readouts of motor function that can be used to interrogate this early mechanism. Such an approach will increase throughput for reduced costs, whilst reducing the severity of the experimental procedures involved
    • 

    corecore