120 research outputs found

    "Europa s'ha de concentrar en la tecnologia i ha de triar els quatre o cinc sectors en què vol ser potent"

    Get PDF
    Entrevista a Vijay Govindarajan, un dels millors experts al món en estratègia i innovació

    "Europe needs to concentrate on technology and choose the four or five areas where it wants to be strong"

    Get PDF
    Interview to Vijay Govindarajan, one of the world's top experts in strategy and innovation

    Improving transcatheter aortic valve interventional predictability via fluid-structure interaction modelling using patient-specific anatomy

    Get PDF
    Transcatheter aortic valve replacement (TAVR) is now a standard treatment for high-surgical-risk patients with severe aortic valve stenosis. TAVR is being explored for broader indications including degenerated bioprosthetic valves, bicuspid valves and for aortic valve (AV) insufficiency. It is, however, challenging to predict whether the chosen valve size, design or its orientation would produce the most-optimal haemodynamics in the patient. Here, we present a novel patient-specific evaluation framework to realistically predict the patient\u27s AV performance with a high-fidelity fluid-structure interaction analysis that included the patient\u27s left ventricle and ascending aorta (AAo). We retrospectively evaluated the pre- and post-TAVR dynamics of a patient who underwent a 23 mm TAVR and evaluated against the patient\u27s virtually de-calcified AV serving as a hypothetical benchmark. Our model predictions were consistent with clinical data. Stenosed AV produced a turbulent flow during peak-systole, while aortic flow with TAVR and de-calcified AV were both in the laminar-to-turbulent transitional regime with an estimated fivefold reduction in viscous dissipation. For TAVR, dissipation was highest during early systole when valve deformation was the greatest, suggesting that an efficient valve opening may reduce energy loss. Our study demonstrates that such patient-specific modelling frameworks can be used to improve predictability and in the planning of AV interventions

    Solvation of furfural at metal–water interfaces: Implications for aqueous phase hydrogenation reactions

    Get PDF
    Metal-water interfaces are central to understanding aqueous-phase heterogeneous catalytic processes. However, the explicit modeling of the interface is still challenging as it necessitates extensive sampling of the interfaces' degrees of freedom. Herein, we use ab initio molecular dynamics (AIMD) simulations to study the adsorption of furfural, a platform biomass chemical on several catalytically relevant metal-water interfaces (Pt, Rh, Pd, Cu, and Au) at low coverages. We find that furfural adsorption is destabilized on all the metal-water interfaces compared to the metal-gas interfaces considered in this work. This destabilization is a result of the energetic penalty associated with the displacement of water molecules near the surface upon adsorption of furfural, further evidenced by a linear correlation between solvation energy and the change in surface water coverage. To predict solvation energies without the need for computationally expensive AIMD simulations, we demonstrate OH binding energy as a good descriptor to estimate the solvation energies of furfural. Using microkinetic modeling, we further explain the origin of the activity for furfural hydrogenation on intrinsically strong-binding metals under aqueous conditions, i.e., the endothermic solvation energies for furfural adsorption prevent surface poisoning. Our work sheds light on the development of active aqueous-phase catalytic systems via rationally tuning the solvation energies of reaction intermediates

    Exploring de Sitter Space and Holography

    Get PDF
    We explore aspects of the physics of de Sitter (dS) space that are relevant to holography with a positive cosmological constant. First we display a nonlocal map that commutes with the de Sitter isometries, transforms the bulk-boundary propagator and solutions of free wave equations in de Sitter onto the same quantities in Euclidean anti-de Sitter (EAdS), and takes the two boundaries of dS to the single EAdS boundary via an antipodal identification. Second we compute the action of scalar fields on dS as a functional of boundary data. Third, we display a family of solutions to 3d gravity with a positive cosmological constant in which the equal time sections are arbitrary genus Riemann surfaces, and compute the action of these spaces as a functional of boundary data from the Einstein gravity and Chern-Simons gravity points of view. These studies suggest that if de Sitter space is dual to a Euclidean conformal field theory (CFT), this theory should involve two disjoint, but possibly entangled factors. We argue that these CFTs would be of a novel form, with unusual hermiticity conditions relating left movers and right movers. After exploring these conditions in a toy model, we combine our observations to propose that a holographic dual description of de Sitter space would involve a pure entangled state in a product of two of our unconventional CFTs associated with the de Sitter boundaries. This state can be constructed to preserve the de Sitter symmetries and and its decomposition in a basis appropriate to antipodal inertial observers would lead to the thermal properties of static patch.Comment: LaTeX, v2: references adde

    Thiazolidinediones enhance vascular endothelial growth factor expression and induce cell growth inhibition in non-small-cell lung cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is known that thiazolidinediones are involved in regulating the expression of various genes, including the vascular endothelial growth factor (VEGF) gene via peroxisome proliferator-activated receptor γ (PPARγ); VEGF is a prognostic biomarker for non-small-cell lung cancer (NSCLC).</p> <p>Methods</p> <p>In this study, we investigated the effects of troglitazone and ciglitazone on the mRNA expression of VEGF and its receptors in human NSCLC cell lines, RERF-LC-AI, SK-MES-1, PC-14, and A549. These mRNA expressions were evaluated by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis. We also studied the effect of Je-11, a VEGF inhibitor, on the growth of these cells.</p> <p>Results</p> <p>In NSCLC cells, thiazolidinediones increased the mRNA expression of VEGF and neuropilin-1, but not that of other receptors such as fms-like tyrosine kinase and kinase insert domain receptor-1. Furthermore, the PPARγ antagonist GW9662 completely reversed this thiazolidinedione-induced increase in VEGF expression. Furthermore, the addition of VEGF inhibitors into the culture medium resulted in the reversal of thiazolidinedione-induced growth inhibition.</p> <p>Conclusions</p> <p>Our results indicated that thiazolidinediones enhance VEGF and neuropilin-1 expression and induce the inhibition of cell growth. We propose the existence of a pathway for arresting cell growth that involves the interaction of thiazolidinedione-induced VEGF and neuropilin-1 in NSCLC.</p

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore