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Transcatheter aortic valve replacement (TAVR) is now a
standard treatment for high-surgical-risk patients with severe
aortic valve stenosis. TAVR is being explored for broader
indications including degenerated bioprosthetic valves,
bicuspid valves and for aortic valve (AV) insufficiency. It is,
however, challenging to predict whether the chosen valve
size, design or its orientation would produce the most-
optimal haemodynamics in the patient. Here, we present a
novel patient-specific evaluation framework to realistically
predict the patient’s AV performance with a high-fidelity
fluid–structure interaction analysis that included the patient’s
left ventricle and ascending aorta (AAo). We retrospectively
evaluated the pre- and post-TAVR dynamics of a patient who
underwent a 23mm TAVR and evaluated against the
patient’s virtually de-calcified AV serving as a hypothetical
benchmark. Our model predictions were consistent with
clinical data. Stenosed AV produced a turbulent flow during
peak-systole, while aortic flow with TAVR and de-calcified
AV were both in the laminar-to-turbulent transitional regime
with an estimated fivefold reduction in viscous dissipation.
For TAVR, dissipation was highest during early systole when
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valve deformation was the greatest, suggesting that an efficient valve opening may reduce energy loss.

Our study demonstrates that such patient-specific modelling frameworks can be used to improve
predictability and in the planning of AV interventions.
ietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:211694
1. Introduction
Transcatheter aortic valve replacement (TAVR) is a minimally invasive aortic valve (AV) replacement
technique by which a new valve is inserted inside the stenosed/diseased valve by means of a
catheter. Once in position and expanded from its initial collapsible state, TAVR pushes the native AV
and takes over the function of ensuring a unidirectional flow between left ventricle (LV) and aorta.
TAVR is now a widely accepted intervention for high-risk patients with severe AV stenosis [1]. TAVR
is expanding to treat a wider range of pathology such as degenerated bioprosthetic valves (valve-in-
valve), bicuspid valves and for aortic insufficiency [2,3]. This is in part due to encouraging results
from evidence-based studies suggesting that the performance of TAVR is comparable to surgical AV
replacements in high-risk, but operable patients in terms of mortality, re-hospitalization and quality of
life improvement post-intervention [4,5]. In fact, TAVR is being increasingly explored in intermediate-
to low-risk patients [6] with studies demonstrating normal valvular function 5 years post-TAVR [7,8].
These broader indications necessitate further study into the long-term haemodynamic performance
and durability of TAVR [1].

Several factors play a key role in the immediate success of TAVR and have been quantitatively
studied. These include device deployment to prosthesis positioning and their interaction with aortic
root which ultimately impact leaflet coaptation [9–13]. While these factors play a structural role in
impacting short-to-intermediate outcome of TAVR, haemodynamics plays a significant role in
determining both immediate and long-term outcomes of TAVR (and surgical replacements). Long-
term performance of AV prosthesis is evaluated by quantitative parameters such as peak velocity, AV
mean pressure gradient, valve area and Doppler velocity index [14]. Overall, cardiac function is
typically assessed using stroke volume, ejection fraction and cardiac output. These parameters heavily
depend on the local fluid dynamics that in turn depend on the valvular dynamics including leaflet
deformation, valve opening and closing times and the effects of the native (and calcified) aortic
leaflets on post-implantation TAVR orientation.

Previous studies suggest that substantial improvement can be achieved in terms of transvalvular
systolic gradient and flow, AV area and cardiac output post-TAVR [15,16]. However, it is difficult to
quantify how these post-TAVR parameters and flow dynamics compare with a structurally normal
native AV as these data are not available. Such a comparison would help predict TAVR’s ability
toward restoring normal LV and aortic flow. It is also challenging to predict the valve size, design
type or its orientation that would produce the most-optimal flow profile for each patient. The ability
to quantitatively compare these parameters against normal AVs serving as a patient-specific
benchmark can help in better planning of TAVR to potentially improve long-term success for the patient.

Fluid–structure interaction (FSI) modelling offers the capability to simultaneously predict both post-
op AV dynamics and its associated blood flow. The current state-of-the-art in FSI-based AV studies use a
conduit-type inlet and outlet to represent ventricular inlet and aortic outlet, respectively [17–22].
Although these studies have provided insights into the AV dynamics and associated blood flow in the
immediate vicinity of the valve leaflets [17–24], application of a conduit-type inlet to represent LV
wall motion-induced change in LV pressure may affect the overall accuracy of the computation.
Additionally, it may be a challenge to impose patient-specific boundary conditions using models with
simplified conduit-type ventricular inlets and, hence, may not be most suitable for patient-specific
planning and evaluation of AV interventions.

Peak systolic flow in the aorta is known to be in the laminar-to-turbulent transitional flow regime and
can go up to a turbulent Reynolds number (Re) of 10 000 under disease conditions [25]. Under such high
Re, flow patterns could involve high magnitudes of jet flow, strong boundary layer separation, vortex
formation and shedding [22,26]. A high-density mesh is required to accurately resolve such complex
flow dynamics. Combined with a highly nonlinear and instantaneous valve deformation, simulation
time for an FSI model at physiological Re could be prohibitively long for pre-operative planning of
AV interventions. Such challenges can either force us to use a coarse mesh [21] or use other artificial
methods such as higher-than-physiological viscosity [22], truncate the computational domain into
conduit-type models [17–20,22] or restrict the analysis to two-dimension [23,24], hence potentially
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Figure 1. Patient-specific workflow for predictive evaluation of TAVR. (a) Three-dimensional patient-specific models are constructed
from CT images acquired during the standard clinical protocol for TAVR. (b) FSI-based evaluation protocol for assessing performance
of TAVR against SAV and de-calcified normal AV. Also shown are the boundary conditions for flow: no-slip and no-penetration
conditions are imposed at the wall. Fluid volume displaced by the moving interfaces (LV contraction and AV leaflet motion) are
computed and applied as outflow at the aortic outlet [33]. Please note that aortic outlets were extended to avoid numerical
instabilities (not shown). (c–h) Workflow for image-based fluid–structure interaction solver equipped with local adaptive mesh
refinement and dynamic partition strategy.
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compromising physiological accuracy. However, the implications of the AV function extend far beyond
the vicinity of the leaflets [27]. Including the LV and its systolic contraction and aortic geometry in the
analysis allow comprehensive and realistic evaluation of systolic AV function.

In this study, we extended our previously validated FSI algorithm combined with patient-specific
imaging towards improving the current state-of-the-art in predictive evaluation of AV interventions.
To that end, we included (i) systolic contraction of LV walls based on the patient’s heart rate; (ii) high-
fidelity flow computation with adaptive meshing (approx. 15–20 million) with flow-based local mesh
refinement (LMR) for accurate resolution of high Re flows; (iii) dynamic partitioning strategy for
efficient computation; (iv) implementing enhanced assumed solid-shell (EAS) element routine for
discretizing leaflet geometries (approx. 8000 eight-node hexahedral elements/leaflet) that are known
to have superior accuracy [28,29], and (v) Fung-type hyperelastic material model to accurately capture
AV dynamics during FSI computation [30–32]. Our patient-specific AV evaluation workflow and
algorithmic/modelling framework are pictorially illustrated in figure 1 and its details explained in §2.
Using our modelling framework, we retrospectively predicted pre- and post-TAVR LV and AV
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dynamics for a patient suffering from a severely stenotic AV who received a 23mm TAVR. The main

focus of our evaluation was to quantitatively compare post-TAVR dynamics with that of diseased AV
dynamics to predict the degree of improvement achieved post-intervention. Uniquely, we virtually
removed the calcium deposits from the AV leaflet surfaces identified via computed tomography (CT)
images to predict the patient’s hypothesized normal AV dynamics that served as a patient-specific
benchmark during our evaluation process. To the best of our knowledge, such a patient-specific
modelling framework or an evaluation workflow has not been realized previously. Model-predicted peak
systolic velocity, pressure gradients, valve opening dynamics, LV pressure distribution, wall shear stress
(WSS) on LV and ascending aorta (AAo), vorticity and viscous dissipation (energy loss) were
quantitatively evaluated to comprehensively assess valvular performance.
rnal/rsos
R.Soc.Open
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2. Methods
This retrospective study of anonymous haemodynamic tracings and CT images acquired as part of
routine clinical care was approved by the institutional review board without the need for additional
informed consent.

The patient-specific workflow for evaluating AV described in this study was extended from our
previously validated FSI algorithm tailored for mitral valve simulations [34]. Figure 1 illustrates our
new AV evaluation workflow with its methodology described in the following sections. Briefly, three-
dimensional models of AV, LV (end diastole) and the aortic root were segmented and reconstructed
from de-identified CT data acquired as part of routine clinical care for TAVR from a 70-year-old
woman with severe symptomatic AS who underwent implantation of a 23mm Edwards Sapien
device. To simulate systolic LV function, the LV walls were prescribed with a contraction rate based
on the patient’s heart rate of 70 bpm, assuming a systolic duration of 1/3 of the cardiac cycle. The
resulting increase in LV pressure created a gradient across the AV to which the leaflets deformed.
The mitral valve was assumed to be fully closed during systolic ejection and hence not included
in the computation. Our comparative evaluation included the patient’s pre-op stenosed AV (SAV), the
patient’s virtually decalcified ‘normalized’ AV (NAV) that served as a patient-specific benchmark and
finally, a virtually implanted 23mm TAVR (figure 1).

2.1. Image acquisition and three-dimensional model reconstruction of patient LV, AV, TAVR and Ao
The AV, LV and aortic root were reconstructed from de-identified patient-specific CT data (figure 1a,b). The
patient’s scan consisted of images taken at 10 distinct phases of the cardiac cycle. For extracting the
geometries, 3D slicer, an open-source tool for digital imaging and communications in medicine file, was
used as the segmentation tool [35]. First, the images of peak diastole were identified and imported into
3D slicer. The 3D slicer segmentation module has a basic set of algorithms to segment images of
different modalities. A semi-automated segmentation algorithm based on thresholding and region
growing was used to segment the AV, LV and aortic root [36]. The segmentation algorithm transformed
the voxels/pixels into objects, and the delineated voxels were used to create a three-dimensional
rendering of each object. With the same threshold parameters, rough segmentation using segment
editor, paint and smoothing functions was repeated to modify the objects until sufficiently smooth
meshes were obtained. The surface rendering for each object was exported from 3D slicer in the
stereolithography format and refined using a computer-aided design (CAD) software package. At this
stage, the three-dimensional model for each object was further refined and smoothened to remove noise
artefacts from the segmentation thresholding method [37].

The three-dimensional model of 23 mm TAVR leaflets was constructed using the commercial CAD
software package GAMBIT (ANSYS, Canonsburg, PA). The TAVR was virtually inserted in the place
of native AV. In the current study, presence of the native calcified AV pushed aside by the TAVR was
assumed to be a non-moving entity occupying space between the TAVR housing and the aortic walls.
Thus, the non-moving native AV acted as walls (no slip and no penetration) and was integrated with
the aortic walls.

2.2. Simulation of left ventricular wall contraction
In this study, the AV leaflets responded to a rise in LV pressure (consequently pressure drop across AV)
due to the contraction of LV. This was achieved by prescribing a LV wall motion tuned to the patient’s
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heart rate, in effect producing a rise in LV pressure as walls contracted inwards. The initial configuration
of the LV was the patient’s reconstructed model imaged at end-diastole that moved inwards to the end-
systole based on the motion specified by our LV contraction model.

In our LV contraction model, spatial changes in the contraction rate or the non-uniformity in LV wall
contraction, particularly from base to apex, and that between septal and lateral walls were controlled by
means of a Gaussian function of the form in each of the x, y and z coordinates

f(x, t) ¼ a : exp � (x� b)2

2c2

 !�����
�����
x,y,z

: ð2:1Þ

In equation (2.1), f (x, t) represents the spatial contraction rate applied along the LV walls that varies in
space and time; a represents rate of contraction, which is based on a typical systolic duration (1/3 of
cardiac cycle), patient’s heart rate and end diastolic to end systolic volume; b and c are tuned
constants that govern the centre and peak of the Gaussian function for each of the x, y, z directions
(b (x, y, z) =−1.4, −1.6, −2.6 and c (x, y, z) = 0.58, 0.5, 0.8) such that septal wall motion is limited to
moving inwards in the normal direction, while the lateral walls contract in all three directions, thus
making the LV contraction realistic effecting a change in LV systolic flow dynamics.
Sci.9:211694
2.3. Patient-specific FSI modelling
Our FSI algorithm couples a computational fluid dynamics (CFD) solver and a finite-element (FE)
structural solver to simultaneously solve both blood flow (fluid), LV wall contraction and leaflet
dynamics (FE) [34], thus representing a comprehensive and realistic approach to simulate/predict AV
function, LV and aortic flow. In this subsection, we provide a brief overview of the algorithmic
components that has been previously developed and validated.

Our partitioned coupling involves a validated massively parallel CFD solver using a Eulerian level
set-based fixed Cartesian grid based on a hybridized ghost fluid method to solve the incompressible
Navier–Stokes equation (equations (2.2) and (2.3)) [34,38–41],

r � u ¼ 0 ð2:2Þ
and

@u
@t

þ u � ru ¼ �Dpþ 1
Re

r2u: ð2:3Þ

In equations (2.2) and (2.3), u denotes fluid velocity vector, p represents the fluid pressure and
Re = ρVD/μ denotes the Reynolds number, in which ρ, V, D and μ refer to fluid density,
characteristic flow velocity, length and fluid viscosity, respectively. Details of the hybridized ghost
fluid method, spatial and temporal discretization schemes used in our flow solver along with the
comprehensive validation studies are described in [39].

The moving interfaces, namely AV leaflets and LV walls, were implicitly represented by level set
fields. Level set fields (ϕ) are signed normal distance functions from a point where flow is solved in
the cells with positive values and the zero-level set (ϕ = 0) contour representing the immersed
boundary (figure 1c) where the boundary conditions are applied/exchanged during computation [34].
Combined with the fixed Cartesian grid, this framework allows an easy representation of complex
geometries and their motion within the computational mesh without the need for constant remeshing
[34,38,39]. The motion of the level set field is governed by the advection equation (equation (2.4)),
where V is the level set propagation velocity driven by the physics of the problem.

@f

@t
þ V � rf ¼ 0: ð2:4Þ

The pressure and the shear force computed on the AV leaflet surfaces (immersed interface) by the
CFD solver (figure 1d,e) are passed to the structural solver as loading conditions. These fluid forces
will elicit an instantaneous response on the thin and pliant valve leaflets having high nonlinear
material properties [34,38]. To capture the resulting high rates of AV leaflet deformation during LV
systolic ejection, we used an EAS element routine with displacement degrees of freedom, superior
bending accuracy and free of shear or volumetric locking [28,29] making it ideal for heart valve leaflet
modelling. This was achieved in our earlier studies with mitral valve where EAS element accurately
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predicted the highly nonlinear behaviour of mitral valve under physiological loading conditions [34]. In

this study, the AV leaflets were represented by a hyperelastic Fung material model which has been
extensively used in the past to model AV dynamics [30,31,42,43]. For the Fung material model, the
second Piola–Kirchhoff stress tensor is given by the relationship (equation (2.5)),

S ¼ @W
@E

: ð2:5Þ

In the above equation, W is the hyperelastic strain energy and E is Green–Lagrangian strain. The strain
energy, W, is established by an exponential form (equation (2.6)),

W ¼ c
2
[eQ � 1]; ð2:6Þ

where c is a material constant, and Q is given by (equation (2.7)),

Q ¼ A1E2
11 þ A2E2

22 þ A3E11E22 þ A4E2
12 þ 2A5E11E22 þ 2A6E22E12, ð2:7Þ

where Eij are Green–Lagrangian strain components, and A1−6 are material constants. The values of C,
A1−6 for each of the valve types used in the current study were obtained from previous studies
[30–32]. To simulate the effect of increased leaflet stiffness due to severe calcification for SAV, we
assumed a 10-fold increase in the value of C with a uniform distribution based on previous studies
[23,24]. The structural solver solves for displacement (figure 1f ), and Newmark algorithm was used to
compute leaflet velocity and acceleration [34]. This information is passed on to the fluid solver
to update the position and velocity of the zero-level set contours (figure 1c). The interface velocity is
then extended along in the normal direction to define the propagation velocities elsewhere in the fluid
computational domain [39].

The coupling of fluid and solid subdomain was enforced strongly at the valve leaflet interface [34]
denoted by Γfs in equation (2.8) with kinematic (equation (2.8a–c)) and dynamic (equation (2.8d ))
matching conditions to ensure continuity in position and traction forces. It should be noted that, for
the fluid subdomain, it is the zero-level set contours for each of the leaflets.

f(x, t) ¼ 0 ¼ xsjG fs, ð2:8aÞ
uf jG fs ¼ _xsjG fs, ð2:8bÞ
af jG fs ¼ €xsjG fs ð2:8cÞ

and ssjG fs � n ¼ sf jG fs � n: ð2:8dÞ

In the above equations (equation (2.8a–c)), f(x, t) ¼ 0 denotes the zero-level set, xs denotes the
position of the interface, while uf and af refer to fluid velocity and acceleration, respectively.
In equation (2.8d), σ represents the stress tensor and n is the unit normal to the FSI interface Γfs.

The fluid and the solid subdomains were strongly coupled at the FSI interface by means of sub-
iterations until convergence (tolerance = 1.0 × 10−6) to counteract the numerical instabilities due to
added mass effect [44–46] induced by a solid-to-fluid density ratio approximately 1 that is typical for
physiological heart valve FSI simulations [34]. Furthermore, a dynamic Aitken under-relaxation
method [44,45] which was previously implemented in our sub-iteration scheme [34] was used in this
study to accelerate the FSI convergence. Our FSI algorithm was previously validated [34] against
standard ‘heart valve inspired’ benchmark studies involving strong added mass effect [47–49].
2.4. Local mesh refinement and adaptive repartitioning strategy for efficient computation
Blood flow dynamics during systolic ejection phase involving fast-moving AV leaflets is known to be
highly complex involving strong boundary layer separations and vortical formations. Peak systolic Re
can range from 4000 to 10 000 based on the degree of AV stenosis [25]. A highly dense mesh (tens of
millions) will be required to adequately resolve such complex flow dynamics. Traditionally, this
would result in a longer computational time in the order of weeks, even with hundreds of processors
[34]. To tackle such challenges efficiently, our Cartesian grid was enhanced with a massively parallel
adaptive meshing algorithm with octree smoothing [39]. During the computation process, the mesh
will be automatically refined and coarsened locally depending on the velocity and vorticity field
gradients (figure 1g). A given cell was marked for refinement if jvjh . 1jvj or jrujh . 1jruj and for
coarsening if jvjh , 0:251jvj or jrujh , 0:251jruj, where h is the characteristic grid sizing and 1jvj and
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1jruj are user-defined tolerances for magnitudes of vorticity (jvj) and velocity gradients (jruj),
respectively [39].

The dynamic repartitioning strategy implemented in our solvers has been described in detail elsewhere
[39,50]. Briefly, our FSI algorithm has been massively parallelized [34,39], with domain decomposition
performed using the open-source partitioning software, ParMETIS [51] with inter-processor
communication handled using message passing interface (MPI) libraries [52]. During the solution
process, certain parts of the flow domain can undergo significant mesh refinement (e.g. in the vicinity
of AV leaflets and Ao during peak systole as shown in figure 1g), while others remain unchanged or
coarsened (e.g. mid-portions of LV where flow is uniform (figure 1g)). The resulting significant load
imbalance is tackled by our algorithm using a dynamic repartitioning strategy based upon the current
mesh distribution and estimating the amount of computational work. ParMETIS [51] uses this
information to create a new partition that results in a new balanced distribution of work (figure 1h),
thereby increasing the efficiency of computation [39,50]. The combination of these methodologies
ensured relatively efficient and accurate FSI simulations that involved highly complex flow dynamics
with fast-moving, flexible AV leaflets immersed in a relatively large flow domain with LV and AAo.
c.Open
Sci.9:211694
3. Results
We quantitatively evaluated clinical parameters such as transvalvular pressure gradient, peak systolic
velocity and AV area, which are routinely used to assess stenosis severity and post-TAVR
performance. We also evaluated leaflet deformation, viscous dissipation [53] and vorticity (identified
by Q-criterion) [54] during systolic ejection to provide comprehensive insights into valve performance.

3.1. Quantitative comparison with pre- and post-op clinical data
Our FSI predictions had good agreement with clinical data (figure 2). The panels of figure 2a show the
comparison of the model-predicted maximum valve opening of SAV with the corresponding CT image,
while the left and right panels of figure 2b show transvalvular pressure gradient (approx. 38 mmHg) and
peak systolic velocity magnitude (approx. 3.9 m s−1) (electronic supplementary material, figure S1A,B).
Model-predicted post-TAVR transvalvular pressure gradients (approx. 15 mm Hg) and peak-systolic
velocity magnitude (approx. 1.7 m s−1) are shown in figure 2c and electronic supplementary material,
figure S1A. These pre- and post-TAVR values quantitatively show the degree of improvement
achieved post-TAVR and are consistent with clinical image data obtained pre- and post-intervention as
a part of the treatment (figure 2d–f ). Thus, patient-specific FSI models with LV and aorta can
potentially predict pre- and post-TAVR dynamics with reasonable accuracy.

3.2. Complex LV and Ao flow led to a highly asymmetrical leaflet deformation during systole
To perform a comparative evaluation, all three valve types were subjected to the same LV contraction rate.
The increased stiffness in SAV exerted a greater resistance to the oncoming flow from the LV that led to an
increased pressure build-up in the left ventricular outflow tract (LVOT) (figure 2b). The valve deformation
was severely restrained, as shown in electronic supplementary material, movie 1A. The restrained and
resistive motion of the leaflets can alter the local flow by changing its angular momentum, as well as
the downstream flow (stronger flow separation and roll-up into vortical structures) can ultimately affect
individual leaflet dynamics. SAV leaflet deformation was highly asymmetrical during systole, reached a
maximum AVA of approximately 1.2 cm2 at approximately 36.6 ms (figure 3a,b) which was consistent
with what has been reported in the past for severe aortic stenosis [55]. As LV contraction rate decreased
during late systole, the leaflets started moving inwards (electronic supplementary material, movie 1A).

Our model predicted that the TAVR had qualitatively similar but quantitatively different opening
dynamics to the NAV. During early systole, NAV and TAVR leaflet deformation led to a triangular-
to-circular orifice (electronic supplementary material, movie 1B,C; figure 3a). NAV reached its
maximum AVA of approximately 3.02 cm2 at approximately 52 ms, while TAVR’s AVA was predicted
to be approximately 2.2 cm2 at approximately 29 ms (figure 3a) with highly asymmetrical leaflet
displacement particularly during early systole (figure 3b). During later stages of systole, as flow began
to evolve in the sino-tubular junction and LV contraction rate decreased, valve leaflet deformation
became asymmetrical and started to move inwards, which is known to aid in efficient closure during
diastole (electronic supplementary material, movie 1B,C) [56].
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3.3. Overall flow dynamics is completely altered post-TAVR
The increased jet flow for SAV led to a complex flow pattern in the AAo. As the LV continued to contract
and due to a narrowed valve opening, the velocity magnitude of the jet emanating from the valve orifice
kept increasing and reached a delayed peak systolic velocity of 3.9 m s−1 at approximately 60 ms
(electronic supplementary material, figure S1A,B). The velocity of the jet seemed well preserved as it
impinged on the aortic walls (figure 4a–c left panel; electronic supplementary material, movie 2A) and
subsequently curved upwards towards the aortic arch. On the other hand, due to much wider and
faster opening of NAV, the jet was more centralized and reached a peak systolic velocity of
approximately 1.14 m s−1 at approximately 20 ms (figure 4b middle panel and electronic supplementary
material, figure S1A,C) which is in the physiological range for normal AVs [57].

It is worthwhile to note that the leaflet deformation of the NAV was highly asymmetrical due to
morphology and complex flow dynamics in the LV/LVOT and aorta (figure 3 and electronic
supplementary material, movie 1B). The leaflets continued to open, allowing the orifice to further
expand (electronic supplementary material, movie 1B), allowing blood flow into the AAo. As the
valve reached its maximum orifice area, the velocity magnitude of jet decreased (electronic
supplementary material, movie 2B and electronic supplementary material, figure S1A,C). Briefly after
staying in a fully open position, the leaflets started to move inwards (figure 4c middle panel;
electronic supplementary material, movie 2B). Our model predicted a post-TAVR dynamics that
looked similar to that of NAV, indicating TAVR’s potential in restoring normal aortic flow dynamics
(figure 4 right panel; electronic supplementary material, figure S1A,B and electronic supplementary
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material, movie 2C). However, peak systole was delayed by 4 ms with its velocity at approximately
1.7 m s−1 (approx. 1.5-fold greater than NAV) (figure 4b right panel; electronic supplementary
material, figure S1A).

The shear gradients caused by an increase in velocity magnitude for SAV led to an increase in WSS in
posterior AAo (figure 5). The model-predicted maximum WSS of approximately 0.95 Pa near the lateral
Ao wall where the jet impinged the AAo was consistent with previous four-dimensional flow magnetic
resonance imaging (MRI)-based investigations into local WSS distribution of AAo of patients with aortic
stenosis [55,58]. It is also worthwhile to note that WSS is high in the basal LV walls leading up to LVOT.
For TAVR and NAV, our model predicted a significantly reduced WSS in AAo (figure 5b,c). The decrease
in local WSS for TAVR (by approx. 3.2-fold) and NAV (by approx. threefold) can be directly attributed to
a decreased velocity magnitudes and a relatively efficient opening dynamics that produced a centralized
flow for TAVR and NAV (figure 4).

3.4. Valve dynamics dictated vortex formation in the ascending aorta
The Re based on mean flow velocity magnitude (1.04, 0.4 and 0.55 m s−1) in the AAo (average diameter
3.3 cm) was calculated to be 10 350, 5600 and 4070 for stenotic SAV, TAVR and NAV, respectively. Based
on their respective Res, the flow for both NAV and TAVR was at laminar-to-turbulent transitional regime,
while that of SAV was turbulent. As expected for this flow regime, aortic flow patterns were associated
with strong boundary layer separations, vortex shedding followed by break-up into smaller incoherent
structures that contributed to energy loss. Figure 6 shows comparisons of vortex development for
SAV, NAV and TAVR during mid, peak and late systole. Vortex shedding followed by break-up into
smaller vortical structures was more intense for SAV in comparison with TAVR and NAV in terms of
vortex magnitude (figure 6 and electronic supplementary material, movie 3A–C). Strong vortical
structures developed behind the valve in the sino-tubular junction, which moved the valve leaflets
toward closure during the early decelerating phase of the systole. For stenotic AV, a vortex ring
formed around the strong jet which dissipated into smaller incoherent structures in the AAo.

3.5. TAVR reduced viscous dissipation in the aorta during systole
Vortex shedding and break-ups (figure 6 and electronic supplementary material, movie 3) are directly
linked to viscous dissipation and energy loss in the system [53]. Figure 7 and electronic
supplementary material, movie 4 show viscous dissipation (energy loss) in the AAo for stenotic AV,
TAVR and NAV for mid, peak and late systole, respectively. Due to an increased vortex shedding and
subsequent break-up, viscous dissipation was predicted to be the highest for SAV across the systolic
phase, particularly during early systole (figure 7 left panel and electronic supplementary material,
movie 4A). Our model predicted a significant reduction in viscous dissipation post-TAVR (an average
of approximately 2.4-fold during early-to-peak systole and average of approximately 11-fold during
late-to-end systole) across the systolic phase that was similar in magnitude to NAV (figure 7 middle
and right panel, and electronic supplementary material, movie 4 B and C). These predictions indicate
that TAVR can lead to a substantial reduction in energy loss in the aorta. It should also be noted that
viscous dissipation was highest during early systole when leaflets undergo a high rate of deformation
indicating that valve opening dynamics plays a significant role towards viscous losses in the aorta.



(a)

(b)

(c)

vorticity
magnitude (103 s–1)

SAV NAV TAVR

max val
6.3 × 104

max val
5.14 × 104

0

max val
7.9 × 104

max val
3.4 × 104

max val
4.2 × 104

max val
6.3 × 104

max val
1.1 × 104

max val
9.2 × 103

max val
5.4 × 104

1.2 2.4 3.6 4.8

Figure 6. Predictions of vorticity for SAV (pre-TAVR) (left panel), NAV (middle panel) and post-TAVR (right panel) during (a) early,
(b) peak and (c) late systole show vorticities peak during early systole and are quantitatively high for SAV while TAVR normalized
vorticity in aorta.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:211694
11
3.6. Stenosed AV nearly closed during end systole
The AV leaflets kept moving towards closure until end systole (approx. 210 ms) (figure 8a,b and electronic
supplementary material, movie 1). This was due to the combination of (i) decrease in the LV contraction
rate and (ii) flow reversal behind the leaflets pushing the leaflets toward closure (figure 8b). Model
predictions showed that the effect was greatest for SAV which closed nearly completely during end-
systole (figure 8a left panel) followed by TAVR (figure 8a right panel) and NAV (figure 8a middle
panel) in that order. As SAV moved towards complete closure, a jet, albeit of weaker magnitude, was
seen emanating from the constricted orifice (figure 8a left panel; electronic supplementary material,
figure S1A,B) that contributed to the complex vortex evolution with higher vortex magnitude in the
AAo when compared with NAV and TAVR (figure 8c).
4. Discussion
In this study, we implemented a new modelling framework for evaluating patient-specific AV dynamics,
left ventricular and aortic flow as a high-fidelity FSI problem using previously developed and validated
algorithms with parallel computing capability (figure 1 bottom panels). A level set-based sharp interface
Cartesian grid with flow-based local mesh refinement capability was used to accurately capture the
highly complex aortic blood flow dynamics during the systolic ejection phase [34,39,50] (figure 2). For
the solid solver, the AV leaflets were discretized as eight-node EAS elements which are known to have
superior bending accuracy with minimal locking effects [28,29], and its capability to model thin and
pliant heart valve structure was demonstrated in our previous mitral valve study [34]. The fluid and
solid solvers were tightly coupled by means of sub-iterative loops with dynamic Aitken under-
relaxation for numerical stability and accelerated convergence [34,44,45] (figure 1 bottom panel). The
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computational domain was dynamically repartitioned for efficiency during simulation based on the
computational load determined by the local mesh distribution (figure 1g,h).

We used this modelling framework to develop a novel workflow for evaluating post-op TAVR
performance against patient’s virtually decalcified native AV (patient-specific benchmark) and
calcified (diseased) valve to quantify the degree of improvement achieved post-TAVR under
physiologically realistic flow conditions (figure 1 top panel). A retrospective study was done using
clinical data from a patient who underwent a 23mm TAVR for a severely SAV. Our framework
allowed us to achieve highly resolved laminar-to-turbulent systolic flow dynamics in the LV and
ascending aorta (AAo) with approximately 15 million cells at the start of the simulation, with our
LMR algorithm refining the computational domain locally up to approximately 19 million during the
simulation (electronic supplementary material, figure S2). One-hundred ninety-two central processing
units (CPUs) were employed for each of the three cases with a wall clock time of approximately 48 h.

Our model-predicted peak systolic dynamics had a good correlation with pre- and post-TAVR clinical
data (figure 2). The valve deformation predicted for the SAV also had a good qualitative agreement with
CT data (figure 2a). Our model thus was able to accurately predict the physiologically realistic fluid
dynamics in the AAo using clinical data. Model predictions of valve deformation, AV area, velocity,
transvalvular pressure, wall shear stress, vorticity and viscous dissipation function allowed comprehensive
evaluation of valvular function and its associated flow dynamics. These evaluation parameters were used
to quantitate diseased AV and post-TAVR dynamics and to predict how post-TAVR restored normal flow
by comparing it against the hypothetical benchmark of virtually de-calcified patient’s native AV. Such FSI-
based modelling frameworks incorporating patient-specific data acquired during clinical diagnosis can
offer predictive insights on post-TAVR function and haemodynamics with reasonable accuracy towards
choosing the right TAVR type and size and leaflet orientation to improve long-term success.

AV stenosis is not just limited to AV leaflets becoming stiffer affecting the blood flow around it but
affects both the LV and the downstream systemic vasculature [27]. Immediately downstream, aortic
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dilatation is common (note that the patient in the present study had a mildly dilated AAo with a
diameter of approx. 3.6 cm) that may also need to be addressed at the time of intervention [27,59].
Our model predicted distinctly different ejection dynamics in the SAV compared with the other two
valves (figures 3–8, and electronic supplementary material, movies 1–4) with a Re of 10 000 in the
aorta consistent with previously reported values [25]. Peak systolic Re in SAV was approximately
twice that of TAVR and NAV. The LMR algorithm was able to resolve the complex flow pattern
which involved high-speed jet flows, incoherent vortical structures, which are typical for such high Re
flows (figures 3–8, and electronic supplementary material, movies 1–4).

The narrowed valve opening of SAV produced a strong jet that impinged on aortic walls (figure 4a–c
left panel and electronic supplementary material, movie 2A). High velocity flows (electronic
supplementary material, figure S1A,B) characterized by high shear gradients (effectively captured by
the highly dense local mesh) in SAV led to distinctively high magnitudes of WSS in the AAo (figure 4a).
WSS is a known mechanotransduction stimulus that can impact cell function and influence aortic wall
remodelling [60,61] that has been confirmed by both four-dimensional MRI and histopathology-based
studies [58,62]. The elevated WSS in the AAo for SAV (figure 5a) may have contributed to the aortic
wall dilation observed in our patient. Similarly, on the upstream side, AV stenosis is associated with LV
remodelling and hypertrophy in the initial stages followed by LV decompensation in the later stages
driven by myocardial fibrosis [27,63,64]. Inclusion of patient-specific LV and aortic geometry in the
modelling framework can potentially contribute to predictive accuracy and provide additional insights
into the effect of SAV-induced abnormal flow on adjacent structures.

Well-formed vortex is thought to preserve momentum and kinetic energy, while disturbed vortex
formation is associated with significant energy loss. MRI-based studies have shown that viscous
energy losses were elevated in patients with disturbed vortex ring formation during LV filling [53]
and in the aorta of patients with SAVs [65]. Our model predictions showed a highly disturbed vortex
in the aorta of SAV with magnitudes approximately fourfold greater than NAV and TAVR (figure 6c)
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and had direct correlation with viscous dissipation (figure 7). It should be noted that viscous dissipation

substantially reduced post-TAVR and was comparable to NAV suggesting that aortic blood flow
efficiency is potentially restored post-TAVR. Our results suggest that analysis of vortex and viscous
dissipation provides additional quantitative insights into aortic blood flow post-AV intervention.

Even though our models captured essential valvular function and blood flow dynamics that had a
good agreement with the clinical data, our study had the following limitations. LV contraction was
modelled using a spatially and temporally varying Gaussian function. Although it captured the end-
diastolic and end-systolic LV volumes in time, it may not have fully captured the exact patient-specific
LV contraction. To tackle this limitation, our model is being refined to map model-predicted LV
contraction spatially and temporally with that of clinical data. The effect of valve stenosis was
represented by increasing leaflet material stiffness, thus ignoring local geometric changes
predominantly by calcium deposits. Efforts are underway to include realistic calcium deposits on
valve surfaces during computations. In the present study, the interaction between native calcified AV
and TAVR was ignored. Hence, the biomechanical interplay between TAVR device and the aortic
landing zone could not be captured. Efforts are underway to include native AV-TAVR interaction to
quantify paravalvular leakage and predict device migration. Next, we used leaflet material properties
for native as well as TAVR leaflets from the literature [30–32]. Material properties for native valves
vary with patients, and obtaining patient-specific material properties is not feasible using current
diagnostic techniques. Aortic deformation during systolic opening of AVs was not included but will
be accounted for in future models. Our three-dimensional model reconstruction involved semi-
automated and manual editing methods for LV, AV and Ao. Careful identification of calcium deposits
followed by virtual decalcification and valve reconstruction required time (approx. 50 h) that could
impact clinical timeframe for TAVR planning as well as the geometric accuracy. Machine learning-
based valve segmentation and reconstruction methods [66] that are being developed offer a viable
solution towards reducing the total time for three-dimensional reconstruction.
5. Conclusion
We have demonstrated a novel workflow that offers comprehensive predictive insights for evaluating AV
performance and benchmarking an implanted valve against a virtually de-calcified normal valve. We
used our workflow to evaluate the performance of a 23mm TAVR to predict the degree of
improvement achieved post-TAVR using patient-specific modelling. Our model predictions included
valvular function and flow dynamics in the LV and in the aorta, parameters such as transvalvular
pressure gradients and peak systolic velocity that are routinely used to access valve performance
clinically. We added parameters such as aortic WSS, vorticity and viscous dissipation to determine
valve functional characteristics more comprehensively. Our results provided quantitative insights into
the implications of AV stenosis in the Ao and LV pre- and post-TAVR and how they compare with
patients’ hypothetical normal AV. This workflow can help determine optimal valve choice and
position, and predict potential complication prior to TAVR or surgical AV replacement.
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