186 research outputs found

    Relatie tussen huisvesting en fysieke gezondheidsproblemen van paarden: een enquête over de perceptie van paardeneigenaars

    Get PDF
    The objective of this preliminary study was to investigate the relationship between the housing conditions and the health and welfare of horses. A survey, based on a questionnaire containing 36 multiple choice questions about various aspects of the housing of horses was conducted. A questionnaire was sent via email to approximately 600 horse owners in Flanders. A total of 225 horse owners completed the questionnaire. The study provides a clear picture of the risk factors that horse owners in practice recognize and the link they see between housing related diseases. Although horse owners usually are sufficiently aware of these influences, they are not taken care of in practice. According to fifty percent of the respondents, the major reason is the impracticability of the advice of the veterinarian. According to the horse owners, the main risk factors affecting the health of horses are: draft, the lack of quarantine measures and the presence of (sharp) foreign objects in the stable. As a consequence, more than 50% of the respondents report nasal discharge and coughing as common problems in their horses. Sixty-seven percent of the horse owners are satisfied with the overall management of the stable. However, there is a widespread dissatisfaction with regard to quarantine measures, in case of a disease outbreak (30% of the horse owners) and in case of the introduction of new animals into a group (36%). Fifty percent of the respondents score their own stable infrastructure 8/10 or more while about one out of four is less satisfied (7/10) about the floor and the walls of their stables. The results of this study can help owners and veterinarians to identify housing factors that may increase the risk to health and welfare problems in horses. This should lead to an improved well-being of the modern, often prolonged - housed horse

    The PDGFRα-laminin B1-keratin 19 cascade drives tumor progression at the invasive front of human hepatocellular carcinoma

    Get PDF
    Human hepatocellular carcinomas (HCCs) expressing the biliary/hepatic progenitor cell marker keratin 19 (K19) have been linked with a poor prognosis and exhibit an increase in platelet-derived growth factor receptor a (PDGFR alpha) and laminin beta 1 (LAMB1) expression. PDGFR alpha has been reported to induce de novo synthesis of LAMB1 protein in a Sjogren syndrome antigen B (La/SSB)-dependent manner in a murine metastasis model. However, the role of this cascade in human HCC remains unclear. This study focused on the functional role of the PDGFR alpha-La/SSB-LAMB1 pathway and its molecular link to K19 expression in human HCC. In surgical HCC specimens from a cohort of 136 patients, PDGFR alpha expression correlated with K19 expression, microvascular invasion and metastatic spread. In addition, PDGFR alpha expression in pre-operative needle biopsy specimens predicted poor overall survival during a 5-year follow-up period. Consecutive histological staining demonstrated that the signaling components of the PDGFR alpha-La/SSB-LAMB1 pathway were strongly expressed at the invasive front. K19-positive HCC cells displayed high levels of alpha 2 beta 1 integrin (ITG) receptor, both in vitro and in vivo. In vitro activation of PDGFR alpha signaling triggered the translocation of nuclear La/SSB into the cytoplasm, enhanced the protein synthesis of LAMB1 by activating its internal ribosome entry site, which in turn led to increased secretion of laminin-111. This effect was abrogated by the PDGFR alpha-specific inhibitor crenolanib. Importantly LAMB1 stimulated ITG-dependent focal adhesion kinase/Src proto-oncogene non-receptor tyrosine kinase signaling. It also promoted the ITG-specific downstream target Rho-associated coiled-coil containing protein kinase 2, induced K19 expression in an autocrine manner, invadopodia formation and cell invasion. Finally, we showed that the knockdown of LAMB1 or K19 in subcutaneous xenograft mouse models resulted in significant loss of cells invading the surrounding stromal tissue and reduced HepG2 colonization into lung and liver after tail vein injection. The PDGFR alpha-LAMB1 pathway supports tumor progression at the invasive front of human HCC through K19 expression

    Serum levels of fibrogenesis biomarkers reveal distinct endotypes predictive of response to weight loss in advanced nonalcoholic fatty liver disease

    Get PDF
    \ua9 2023 Lippincott Williams and Wilkins. All rights reserved.Background: NAFLD is associated with activation of fibroblasts and hepatic fibrosis. Substantial patient heterogeneity exists, so it remains challenging to risk-stratify patients. We hypothesized that the amount of fibroblast activity, as assessed by circulating biomarkers of collagen formation, can define a "high-risk, high-fibrogenesis" patient endotype that exhibits greater fibroblast activity and potentially more progressive disease, and this endotype may be more amendable to dietary intervention. Methods: Patients with clinically confirmed advanced NAFLD were prescribed a very low-calorie diet (VLCD) intervention (800 kcal/d) to induce weight loss, achieved using total diet replacement. Serum markers of type III (PRO-C3) and IV collagen (PRO-C4) fibrogenesis were assessed at baseline every second week until the end of the VLCD, and 4 weeks post-VLCD and at 9 months follow-up. Results: Twenty-six subjects had a mean weight loss of 9.7% with VLCD. This was associated with significant improvements in liver biochemistry. When stratified by baseline PRO-C3 and PRO-C4 into distinct fibrosis endotypes, these predicted substantial differences in collagen fibrogenesis marker dynamics in response to VLCD. Patients in the high activity group (PRO-C3 11.4 ng/mL and/or PRO-C4 236.5 ng/mL) exhibited a marked reduction of collagen fibrogenesis, ranging from a 40%-55% decrease in PRO-C3 and PRO-C4, while fibrogenesis remained unchanged in the low activity group. The biochemical response to weight loss was substantially greater in patients a priori exhibiting a high fibroblast activity endotype in contrast to patients with low activity. Conclusions: Thus, the likelihood of treatment response may be predicted at baseline by quantification of fibrogenesis biomarkers

    Investigation of Performance and Cavitation Treatment in a Kaplan Hydro Turbine

    Get PDF
    Cavitation is a phenomenon that occurs in various turbomachinery applications causing drawbacks on the. Some of these downsides are damaging the components of the system, generating noise and vibration, and loss of the turbine efficiency over time. Thus, it is imperative to address issue of cavitation to increase the life span of the equipment in addition to improve the system performance. This thesis introduces a method used to mitigate the cavitation phenomenon in a 3-inch Kaplan hydro turbine via injecting air at the leading edge of the rotor blades. The study is based on modeling the turbine using Computational Fluid Dynamics (CFD) software as well as carrying out experimental tests. The simulations were conducted at different air injection pressures over a spectrum of rotational speeds using Large Eddy Simulation (LES) for turbulence and volume of fluid for multiphase interactions: water, vapor water and air. The cavitation behavior was observed first without aeration, then followed by air injection simulations to investigate the effect of aeration. Each case was simulated for 12 cycles at rotational speeds of 1000, 2000, 3000, 4000, and 5000 rpm. The Vapor Volume Fraction (VVF) and the output mechanical power were monitored throughout the simulations. The data acquired from the simulations were compared to the experimental results for verifications. It was observed that the cavitation was mitigated in both the computer simulations and the experiment testing reaching up to 49.7% as an average reduction, while the output power was reduced by 6.6%

    An improved vitrification protocol for equine immature oocytes, resulting in a first live foal

    Get PDF
    Background: The success rate for vitrification of immature equine oocytes is low. Although vitrified-warmed oocytes are able to mature, further embryonic development appears to be compromised. Objectives: The aim of this study was to compare two vitrification protocols, and to examine the effect of the number of layers of cumulus cells surrounding the oocyte during vitrification of immature equine oocytes. Study design: Experimental in vitro and in vivo trials. Methods: Immature equine oocytes were vitrified after a short exposure to high concentrations of cryoprotective agents (CPAs), or a long exposure to lower concentrations of CPAs. In Experiment 1, the maturation of oocytes surrounded by multiple layers of cumulus cells (CC oocytes) and oocytes surrounded by only corona radiata (CR oocytes) was investigated. In Experiment 2, spindle configuration was determined for CR oocytes vitrified using the two vitrification protocols. In Experiment 3, further embryonic development was studied after fertilisation and culture. Embryo transfer was performed in a standard manner. Results: Similar nuclear maturation rates were observed for CR oocytes vitrified using the long exposure and nonvitrified controls. Furthermore, a lower maturation rate was obtained for CC oocytes vitrified with the short exposure compared to control CR oocytes (P = 0.001). Both vitrification protocols resulted in significantly higher rates of aberrant spindle configuration than the control groups (P<0.05). Blastocyst development only occurred in CR oocytes vitrified using the short vitrification protocol, and even though blastocyst rates were significantly lower than in the control group (P<0.001), transfer of five embryos resulted in one healthy foal. Main limitations: The relatively low number of equine oocytes and embryo transfer procedures performed. Conclusions: For vitrification of immature equine oocytes, the use of 1) CR oocytes, 2) a high concentration of CPAs, and 3) a short exposure time may be key factors for maintaining developmental competence

    Macrophage scavenger receptor 1 mediates lipid-induced inflammation in non-alcoholic fatty liver disease

    Get PDF
    Background &amp; Aims: Obesity-associated inflammation is a key player in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). However, the role of macrophage scavenger receptor 1 (MSR1, CD204) remains incompletely understood. Methods: A total of 170 NAFLD liver biopsies were processed for transcriptomic analysis and correlated with clinicopathological features. Msr1-/- and wild-type mice were subjected to a 16-week high-fat and high-cholesterol diet. Mice and ex vivo human liver slices were treated with a monoclonal antibody against MSR1. Genetic susceptibility was assessed using genome-wide association study data from 1,483 patients with NAFLD and 430,101 participants of the UK Biobank. Results: MSR1 expression was associated with the occurrence of hepatic lipid-laden foamy macrophages and correlated with the degree of steatosis and steatohepatitis in patients with NAFLD. Mice lacking Msr1 were protected against diet-induced metabolic disorder, showing fewer hepatic foamy macrophages, less hepatic inflammation, improved dyslipidaemia and glucose tolerance, and altered hepatic lipid metabolism. Upon induction by saturated fatty acids, MSR1 induced a pro-inflammatory response via the JNK signalling pathway. In vitro blockade of the receptor prevented the accumulation of lipids in primary macrophages which inhibited the switch towards a pro-inflammatory phenotype and the release of cytokines such as TNF-É‘. Targeting MSR1 using monoclonal antibody therapy in an obesity-associated NAFLD mouse model and human liver slices resulted in the prevention of foamy macrophage formation and inflammation. Moreover, we identified that rs41505344, a polymorphism in the upstream transcriptional region of MSR1, was associated with altered serum triglycerides and aspartate aminotransferase levels in a cohort of over 400,000 patients. Conclusions: Taken together, our data suggest that MSR1 plays a critical role in lipid-induced inflammation and could thus be a potential therapeutic target for the treatment of NAFLD. Lay summary: Non-alcoholic fatty liver disease (NAFLD) is a chronic disease primarily caused by excessive consumption of fat and sugar combined with a lack of exercise or a sedentary lifestyle. Herein, we show that the macrophage scavenger receptor MSR1, an innate immune receptor, mediates lipid uptake and accumulation in Kupffer cells, resulting in liver inflammation and thereby promoting the progression of NAFLD in humans and mice

    Intestinal B cells license metabolic T-cell activation in NASH microbiota/antigen-independently and contribute to fibrosis by IgA-FcR signalling

    Full text link
    BACKGROUND & AIMS: The progression of non-alcoholic steatohepatitis (NASH) to fibrosis and hepatocellular carcinoma (HCC) is aggravated by auto-aggressive T cells. The gut-liver axis contributes to NASH, but the mechanisms involved and the consequences for NASH-induced fibrosis and liver cancer remain unknown. We investigated the role of gastrointestinal B cells in the development of NASH, fibrosis and NASH-induced HCC. METHODS: C57BL/6J wild-type (WT), B cell-deficient and different immunoglobulin-deficient or transgenic mice were fed distinct NASH-inducing diets or standard chow for 6 or 12 months, whereafter NASH, fibrosis, and NASH-induced HCC were assessed and analysed. Specific pathogen-free/germ-free WT and μMT mice (containing B cells only in the gastrointestinal tract) were fed a choline-deficient high-fat diet, and treated with an anti-CD20 antibody, whereafter NASH and fibrosis were assessed. Tissue biopsy samples from patients with simple steatosis, NASH and cirrhosis were analysed to correlate the secretion of immunoglobulins to clinicopathological features. Flow cytometry, immunohistochemistry and single-cell RNA-sequencing analysis were performed in liver and gastrointestinal tissue to characterise immune cells in mice and humans. RESULTS: Activated intestinal B cells were increased in mouse and human NASH samples and licensed metabolic T-cell activation to induce NASH independently of antigen specificity and gut microbiota. Genetic or therapeutic depletion of systemic or gastrointestinal B cells prevented or reverted NASH and liver fibrosis. IgA secretion was necessary for fibrosis induction by activating CD11b+CCR2+F4/80+CD11c-FCGR1+ hepatic myeloid cells through an IgA-FcR signalling axis. Similarly, patients with NASH had increased numbers of activated intestinal B cells; additionally, we observed a positive correlation between IgA levels and activated FcRg+ hepatic myeloid cells, as well the extent of liver fibrosis. CONCLUSIONS: Intestinal B cells and the IgA-FcR signalling axis represent potential therapeutic targets for the treatment of NASH. IMPACT AND IMPLICATIONS: There is currently no effective treatment for non-alcoholic steatohepatitis (NASH), which is associated with a substantial healthcare burden and is a growing risk factor for hepatocellular carcinoma (HCC). We have previously shown that NASH is an auto-aggressive condition aggravated, amongst others, by T cells. Therefore, we hypothesized that B cells might have a role in disease induction and progression. Our present work highlights that B cells have a dual role in NASH pathogenesis, being implicated in the activation of auto-aggressive T cells and the development of fibrosis via activation of monocyte-derived macrophages by secreted immunoglobulins (e.g., IgA). Furthermore, we show that the absence of B cells prevented HCC development. B cell-intrinsic signalling pathways, secreted immunoglobulins, and interactions of B cells with other immune cells are potential targets for combinatorial NASH therapies against inflammation and fibrosis

    Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically-characterised cohort

    Get PDF
    Correction: Volume: 74 Issue: 5 Pages: 1274-1275 DOI: 10.1016/j.jhep.2021.02.003 Correction: Volume78, Issue5 Page: 1085-1086 DOI: 10.1016/j.jhep.2023.02.028 Published MAY 2023Background and Aims Genetic factors associated with non-alcoholic fatty liver disease (NAFLD) remain incompletely understood. To date, most GWAS studies have adopted radiologically assessed hepatic triglyceride content as reference phenotype and so cannot address steatohepatitis or fibrosis. We describe a genome-wide association study (GWAS) encompassing the full spectrum of histologically characterized NAFLD. Methods The GWAS involved 1483 European NAFLD cases and 17781 genetically-matched population controls. A replication cohort of 559 NAFLD cases and 945 controls was genotyped to confirm signals showing genome-wide or close to genome-wide significance. Results Case-control analysis identified signals showing p-values ≤ 5 x 10-8 at four locations (chromosome (chr) 2 GCKR/C2ORF16; chr4 HSD17B13; chr19 TM6SF2; chr22 PNPLA3) together with two other signals with pPeer reviewe
    • …
    corecore