77 research outputs found

    Service evaluation to establish the sensitivity, specificity and additional value of broad-range 16S rDNA PCR for the diagnosis of infective endocarditis from resected endocardial material in patients from eight UK and Ireland hospitals

    Get PDF
    Infective endocarditis (IE) can be diagnosed in the clinical microbiology laboratory by culturing explanted heart valve material. We present a service evaluation that examines the sensitivity and specificity of a broad-range 16S rDNA polymerase chain reaction (PCR) assay for the detection of the causative microbe in culture-proven and culture-negative cases of IE. A clinical case-note review was performed for 151 patients, from eight UK and Ireland hospitals, whose endocardial specimens were referred to the Microbiology Laboratory at Great Ormond Street Hospital (GOSH) for broad-range 16S rDNA PCR over a 12-year period. PCR detects the causative microbe in 35/47 cases of culture-proven IE and provides an aetiological agent in 43/69 cases of culture-negative IE. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the 16S rDNA PCR assay were calculated for this series of selected samples using the clinical diagnosis of IE as the reference standard. The values obtained are as follows: sensitivity = 67 %, specificity = 91 %, PPV = 96 % and NPV = 46 %. A wide range of organisms are detected by PCR, with Streptococcus spp. detected most frequently and a relatively large number of cases of Bartonella spp. and Tropheryma whipplei IE. PCR testing of explanted heart valves is recommended in addition to culture techniques to increase diagnostic yield. The data describing the aetiological agents in a large UK and Ireland series of culture-negative IE will allow future development of the diagnostic algorithm to include real-time PCR assays targeted at specific organisms

    Sharing of carbapenemase-encoding plasmids between Enterobacteriaceae in UK sewage uncovered by MinION sequencing

    Get PDF
    Dissemination of carbapenem resistance among pathogenic Gram-negative bacteria is a looming medical emergency. Efficient spread of resistance within and between bacterial species is facilitated by mobile genetic elements. We hypothesized that wastewater contributes to the dissemination of carbapenemase-producing Enterobacteriaceae (CPE), and studied this through a cross-sectional observational study of wastewater in the East of England. We isolated clinically relevant species of CPE in untreated and treated wastewater, confirming that waste treatment does not prevent release of CPE into the environment. We observed that CPE-positive plants were restricted to those in direct receipt of hospital waste, suggesting that hospital effluent may play a role in disseminating carbapenem resistance. We postulated that plasmids carrying carbapenemase genes were exchanged between bacterial hosts in sewage, and used short-read (Illumina) and long-read (MinION) technologies to characterize plasmids encoding resistance to antimicrobials and heavy metals. We demonstrated that different CPE species (Enterobacter kobei\textit{Enterobacter kobei} and Raoultella ornithinolytica\textit{Raoultella ornithinolytica}) isolated from wastewater from the same treatment plant shared two plasmids of 63 and 280 kb. The former plasmid conferred resistance to carbapenems (blaOXA-48bla_\text{OXA-48}), and the latter to numerous drug classes and heavy metals. We also report the complete genome sequence for Enterobacter kobei\textit{Enterobacter kobei}. Small, portable sequencing instruments such as the MinION have the potential to improve the quality of information gathered on antimicrobial resistance in the environment.This publication presents independent research supported by the Health Innovation Challenge Fund (WT098600, HICF-T5-342), a parallel funding partnership between the Department of Health, UK, and the Wellcome Trust. C. L. is a Wellcome Trust Sir Henry Postdoctoral Fellow (110243/Z/15/Z). T. G. is a Wellcome Trust Research Training Fellow (103387/Z/13/Z)

    Percutaneous suction and irrigation for the treatment of recalcitrant pyogenic spondylodiscitis.

    Get PDF
    The primary management of pyogenic spondylodiscitis is conservative. Once the causative organism has been identified, by blood culture or biopsy, administration of appropriate intravenous antibiotics is started. Occasionally patients do not respond to antibiotics and surgical irrigation and debridement is needed. The treatment of these cases is challenging and controversial. Furthermore, many affected patients have significant comorbidities often precluding more extensive surgical intervention. The aim of this study is to describe early results of a novel, minimally invasive percutaneous technique for disc irrigation and debridement in pyogenic spondylodiscitis.This article is freely available via Open Access. Click on the Additional Link above to access the full-text via the publisher's sit

    SARS-CoV-2 evolution during treatment of chronic infection

    Get PDF
    SARS-CoV-2 Spike protein is critical for virus infection via engagement of ACE21, and is a major 54 antibody target. Here we report chronic SARS-CoV-2 with reduced sensitivity to neutralising 55 antibodies in an immune suppressed individual treated with convalescent plasma, generating 56 whole genome ultradeep sequences over 23 time points spanning 101 days. Little change was 57 observed in the overall viral population structure following two courses of remdesivir over the 58 first 57 days. However, following convalescent plasma therapy we observed large, dynamic 59 virus population shifts, with the emergence of a dominant viral strain bearing D796H in S2 and 60 H69/V70 in the S1 N-terminal domain NTD of the Spike protein. As passively transferred 61 serum antibodies diminished, viruses with the escape genotype diminished in frequency, before 62 returning during a final, unsuccessful course of convalescent plasma. In vitro, the Spike escape 63 double mutant bearing H69/V70 and D796H conferred modestly decreased sensitivity to 64 convalescent plasma, whilst maintaining infectivity similar to wild type. D796H appeared to be 65 the main contributor to decreased susceptibility but incurred an infectivity defect. The 66 H69/V70 single mutant had two-fold higher infectivity compared to wild type, possibly 67 compensating for the reduced infectivity of D796H. These data reveal strong selection on SARS68 CoV-2 during convalescent plasma therapy associated with emergence of viral variants with 69 evidence of reduced susceptibility to neutralising antibodies.COG-UK is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) and Genome Research Limited, operating as the Wellcome Sanger Institute

    Spinal infection: state of the art and management algorithm

    Get PDF
    Spinal infection is a rare pathology although a concerning rising incidence has been observed in recent years. This increase might reflect a progressively more susceptible population but also the availability of increased diagnostic accuracy. Yet, even with improved diagnosis tools and procedures, the delay in diagnosis remains an important issue. This review aims to highlight the importance of a methodological attitude towards accurate and prompt diagnosis using an algorithm to aid on spinal infection management. METHODS: Appropriate literature on spinal infection was selected using databases from the US National Library of Medicine and the National Institutes of Health. RESULTS: Literature reveals that histopathological analysis of infected tissues is a paramount for diagnosis and must be performed routinely. Antibiotic therapy is transversal to both conservative and surgical approaches and must be initiated after etiological diagnosis. Indications for surgical treatment include neurological deficits or sepsis, spine instability and/or deformity, presence of epidural abscess and upon failure of conservative treatment. CONCLUSIONS: A methodological assessment could lead to diagnosis effectiveness of spinal infection. Towards this, we present a management algorithm based on literature findings

    The global dissemination of hospital clones of Enterococcus faecium.

    Get PDF
    BACKGROUND: The hospital-adapted A1 group of Enterococcus faecium remains an organism of significant concern in the context of drug-resistant hospital-associated infections. How this pathogen evolves and disseminates remains poorly understood. METHODS: A large, globally representative collection of short-read genomic data from the hospital-associated A1 group of Enterococcus faecium was assembled (n = 973). We analysed, using a novel analysis approach, global diversity in terms of both the dynamics of the accessory genome and homologous recombination among conserved genes. RESULTS: Two main modes of genomic evolution continue to shape E. faecium: the acquisition and loss of genes, including antimicrobial resistance genes, through mobile genetic elements including plasmids, and homologous recombination of the core genome. These events lead to new clones emerging at the local level, followed by the erosion of signals of clonality through recombination, and in some identifiable cases producing new clonal clusters. These patterns lead to new, emerging lineages which are able to spread globally over relatively short timeframes. CONCLUSIONS: The ability of A1 E. faecium to continually present new combinations of genes for potential selection suggests that controlling this pathogen will remain challenging but establishing a framework for understanding genomic evolution is likely to aid in tracking the threats posed by newly emerging lineages
    • …
    corecore