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 51 

Summary 52 

SARS-CoV-2 Spike protein is critical for virus infection via engagement of ACE21, and is a major 53 

antibody target. Here we report chronic SARS-CoV-2 with reduced sensitivity to neutralising 54 

antibodies in an immune suppressed individual treated with convalescent plasma, generating 55 

whole genome ultradeep sequences over 23 time points spanning 101 days. Little change was 56 

observed in the overall viral population structure following two courses of remdesivir over the 57 



first 57 days. However, following convalescent plasma therapy we observed large, dynamic 58 

virus population shifts, with the emergence of a dominant viral strain bearing D796H in S2 and 59 ઢH69/ઢV70 in the S1 N-terminal domain NTD of the Spike protein. As passively transferred 60 

serum antibodies diminished, viruses with the escape genotype diminished in frequency, before 61 

returning during a final, unsuccessful course of convalescent plasma. In vitro, the Spike escape 62 

double mutant bearing ઢH69/ઢV70 and D796H conferred modestly decreased sensitivity to 63 

convalescent plasma, whilst maintaining infectivity similar to wild type. D796H appeared to be 64 

the main contributor to decreased susceptibility but incurred an infectivity defect. The 65 ઢH69/ઢV70 single mutant had two-fold higher infectivity compared to wild type, possibly 66 

compensating for the reduced infectivity of D796H. These data reveal strong selection on SARS-67 

CoV-2 during convalescent plasma therapy associated with emergence of viral variants with 68 

evidence of reduced susceptibility to neutralising antibodies.  69 

 70 

Clinical case history of SARS-CoV-2 infection in setting of immune-compromised host 71 

A septuagenarian male was admitted to a tertiary hospital in summer of 2020 and had tested 72 

positive for SARS-CoV-2 RT-PCR 35 days previously on a nasopharyngeal swab (Day 1) at a local 73 

hospital (Extended data 1 and 2). His past medical history was significant for marginal B cell 74 

lymphoma diagnosed in 2012, with previous chemotherapy including vincristine, prednisolone, 75 

cyclophosphamide and anti-CD20 B cell depletion with rituximab. It is likely that both 76 

chemotherapy and underlying lymphoma contributed to B and T cell combined 77 

immunodeficiency (Extended data 2 and 3, Supplementary Table 1). Computed tomography 78 

(CT) of the chest showed widespread abnormalities consistent with COVID-19 pneumonia 79 

(Supplementary Figure 1). Treatment included two 10-day courses of remdesivir with a five day 80 

gap in between (Extended data 1). Two units of convalescent plasma were administered on 81 

days 63 and 65 (Extended data 3). Following clinical deterioration, remdesivir and a unit of 82 

convalescent plasma were administered on day 95, but the individual unfortunately died on day 83 

102 (Supplementary text).  84 

 85 

Virus genomic comparative analysis of 23 sequential respiratory samples over 101 days 86 



The majority of samples were respiratory samples from nose and throat or endotracheal 87 

aspirates during the period of intubation (Supplementary Table 3). Ct values ranged from 16-34 88 

and all 23 respiratory samples were successfully sequenced by standard single molecule 89 

sequencing approach as per the ARTIC protocol implemented by COG-UK; of these 20 90 

additionally underwent short-read deep sequencing using the Illumina platform 91 

(Supplementary table 4). There was general agreement between the two methods (Extended 92 

data 4). However due to the higher reliability of Illumina for low frequency variants, this was 93 

used for formal analysis2,3. Additionally, single genome amplification and sequencing of Spike 94 

using extracted RNA from respiratory samples was used as an independent method to detect 95 

mutations observed (Extended data 4). Finally, we detected no evidence of recombination, 96 

based on two independent methods. 97 

 98 

Maximum likelihood analysis of patient-derived whole genome consensus sequences 99 

demonstrated clustering with other local sequences from the same region (Figure 1). The 100 

infecting strain was assigned to lineage 20B bearing the D614G Spike variant. Environmental 101 

sampling showed evidence of virus on surfaces such as telephone and call bell. Sequencing of 102 

these surface viruses showed clustering with those derived from the respiratory tract (Extended 103 

data 2). All samples were consistent with having arisen from a single underlying viral 104 

population. In our phylogenetic analysis, we included sequential sequences from three other 105 

local patients identified with persistent viral RNA shedding over a period of 4 weeks or more as 106 

well as two long term immunosuppressed SARS-CoV-2 ‘shedders’ recently reported4,5, 107 

(Extended data 2, Supplementary Table 2). While the sequences from the three local patients as 108 

well as from Avanzato et al5 showed little divergence with no amino acid changes in Spike over 109 

time, the case patient showed significant diversification. The Choi et al report4 showed similar 110 

degree of diversification as the case patient. Further investigation of the sequence data 111 

suggested the existence of an underlying structure to the viral population in our patient, with 112 

samples collected at days 93 and 95 being rooted within, but significantly divergent from the 113 

original population (Extended data 5 and 6). The relationship of the divergent samples to those 114 

at earlier time points argues against superinfection. 115 



 116 

SARS-CoV-2 viral diversity  117 

All samples tested positive by RT-PCR and there was no sustained change in Ct values 118 

throughout the 101 days following the first two courses of remdesivir (days 41 and 54), or the 119 

first two units of convalescent plasma with polyclonal antibodies (days 63 and 65, Extended 120 

data 3). Of note we were not able to culture virus from stored swab samples. Consensus 121 

sequences from short read deep sequence Illumina data revealed dynamic population changes 122 

after day 65, as shown by a highlighter plot (Extended data 6). In addition, we were also able to 123 

follow the dynamics of virus populations down to low frequencies during the entire period 124 

(Figure 2, Supplementary Table 4). Following remdesivir at day 41 the low frequency variant 125 

analysis allowed us to observe transient amino acid changes in populations at below 50% 126 

abundance in Orf 1b, 3a and Spike, with a T39I (C27509T) mutation in ORF7a reaching 79% on 127 

day 45 (Figure 2, pink, supplementary information). At day 66 we noted I513T in NSP2 (T2343C) 128 

and V157L (G13936T) in RdRp had emerged from undetectable at day 54 to almost 100% 129 

frequency (Figure 2, red and green dashed lines), with the polymerase being the more plausible 130 

candidate for driving this sweep. Notably, spike variant N501Y, which can increase the ACE2 131 

receptor affinity6, and which is present in the new UK B1.1.7 lineage7, was observed on day 55 132 

at 33% frequency, but was eliminated by the sweep of the NSP2/RdRp variant.  133 

 134 

In contrast to the early period of infection, between days 66 and 82, following the first two 135 

administrations of convalescent sera, a shift in the virus population was observed, with a 136 

variant bearing D796H in S2 and ઢH69/ઢV70 in the S1 N-terminal domain (NTD) becoming the 137 

dominant population at day 82. This was identified in a nose and throat swab sample with high 138 

viral load as indicated by Ct of 23 (Figure 3A). The deletion was detected transiently at baseline 139 

according to short read deep sequencing. ઢH69/ઢV70 was due to an out of frame six 140 

nucleotide deletion resulting in the sequence of codon 68 changing from ATA to ATC. 141 

 142 

On Days 86 and 89, viruses obtained from upper respiratory tract samples were characterised 143 

by the Spike mutations Y200H and T240I, with the deletion/mutation pair observed on day 82 144 



having fallen to frequencies of 10% or less (Figure 2 and 3). The Spike mutations Y200H and 145 

T240I were accompanied at high frequency by two other non-synonymous variants with similar 146 

allele frequencies, coding for I513T in NSP2, V157L in RdRp and N177S in NSP15 (Figure 2A). 147 

Both of these were also previously observed at >98% frequency in the sample on day 66 (Figure 148 

2A, red and green lines), arguing that this new lineage emerged out of a previously existing 149 

population.  150 

 151 

Sequencing of a nose and throat swab sample at day 93 identified viruses characterised by 152 

Spike mutations P330S at the edge of the RBD and W64G in S1 NTD at close to 100% 153 

abundance, with D796H along with ઢH69/ઢV70 at <1% abundance and the variants Y200H and 154 

T240I at frequencies of <2%. Viruses with the P330S variant were detected in two independent 155 

samples from different sampling sites, arguing against the possibility of contamination. The 156 

divergence of these samples from the remainder of the population (Figure 2, 3B and Extended 157 

data 5 and 6) suggests the possibility that they represent a compartmentalised subpopulation. 158 

  159 

Patterns in the variant frequencies suggest competition between virus populations carrying 160 

different mutations, viruses with the D796H/ઢH69/ઢV70 deletion/mutation pair rising to high 161 

frequency during CP therapy, then being outcompeted by another population in the absence of 162 

therapy. Specifically, these data are consistent with a lineage of viruses with the NSP2 I513T 163 

and RdRp V157L variant, dominant on day 66, being outcompeted during therapy by the 164 

mutation/deletion variant. With the lapse in therapy, the original strain, having acquired NSP15 165 

N1773S and the Spike mutations Y200H and T240I, regained dominance, followed by the 166 

emergence of a separate population with the W64G and P330S mutations.  167 

 168 

In a final attempt to reduce the viral load, a third course of remdesivir (day 93) and third dose 169 

of CP (day 95) were administered. We observed a re-emergence of the D796H + ઢH69/ઢV70 170 

viral population (Figure 2, 3). The inferred linkage of D796H and ઢH69/ઢV70 was maintained as 171 

evidenced by the highly similar frequencies of the two variants, suggesting that the third unit of 172 

CP led to the re-emergence of this population under renewed positive selection. In further 173 



support of our proposed idea of competition, noted above, frequencies of these two variants 174 

appeared to mirror changes in the NSP2 I513T mutation (Figure 2), suggesting these as markers 175 

of opposing clades in the viral population. Ct values remained low throughout this period with 176 

hyperinflammation, eventually leading to multi-organ failure and death at day 102. The 177 

repeated increase in frequency of the viral population with CP therapy strongly supports the 178 

hypothesis that the deletion/mutation combination conferred selective advantage. 179 

 180 

Spike mutants emerging post convalescent plasma impair neutralising antibody potency  181 

Using lentiviral pseudotyping we generated wild type, ઢH69/ઢV70 + D796H and single mutant 182 

Spike proteins in enveloped virions in order to measure neutralisation activity of CP against 183 

these viruses (Figure 4). This system has been shown to give generally similar results to 184 

replication competent virus8,9. Spike protein from each mutant was detected in pelleted virions 185 

(Figure 4A). We also probed with an HIV-1 p24 antibody to monitor levels of lentiviral particle 186 

production (Figure 4A, Supplementary Figure 2). We then measured infectivity of the 187 

pseudoviruses, correcting for virus input using reverse transcriptase activity measurement, and 188 

found that ઢH69/ઢV70 appeared to have two-fold higher infectivity over a single round of 189 

infection compared to wild type (Figure 4B, Extended data 7). By contrast, the D796H single 190 

mutant had significantly lower infectivity as compared to wild type and double mutant had 191 

similar infectivity to wild type (Figure 4B, Extended data 7). 192 

 193 

We found that D796H alone and the D796H + ઢH69/ઢV70 double mutant were less sensitive to 194 

neutralisation by convalescent plasma samples (Figure 4C-E, Extended data 7). By contrast the 195 ઢH69/ઢV70 single mutant did not reduce neutralisation sensitivity. In addition, patient derived 196 

serum from days 64 and 66 (one day either side of CP2 infusion) similarly showed lower 197 

potency against the D796H + ઢH69/ઢV70 mutants (Figure 4F, G).  198 

 199 

A panel of nineteen monoclonal antibodies (mAbs) isolated from three donors was previously 200 

identified to neutralize SARS-CoV-2. To establish if the mutations incurring in vivo (D796H and 201 ઢH69/ઢV70) resulted in a global change in neutralization sensitivity we tested neutralising mAbs 202 



targeting the seven major epitope clusters previously described (excluding non-neutralising clusters 203 

II, V and small [n =<2] neutralising clusters IV, X). The eight RBD-specific mAbs (Extended data 8) 204 

exhibited no major change in neutralisation potency and non-RBD specific COVA1-21 showing 3-5 205 

fold reduction in potency against ઢH69/ઢV70+D796H and ઢH69/ઢV70, but not D796H alone9 206 

(Extended data 8). We observed no differences in neutralisation between single/double 207 

mutants and wild type, suggesting that the mechanism of escape was likely outside these 208 

epitopes in the RBD. These data confirm the specificity of the findings from convalescent 209 

plasma and suggest that mutations observed are related to antibodies targeting regions outside 210 

the RBD. Interestingly , ઢH69/ઢV70 containing viruses showed reduced neutralisation 211 

sensitivity to the mAb COVA1-21, targeting an as yet undefined epitope outside the RBD. 10. 212 

 213 

To understand how the ઢH69/ઢV70 and D796H might confer antibody resistance, we assessed 214 

how they might affect the Spike structure (Extended data 9). We based this analysis primarily 215 

on a structure lacking stabilising modifications (PDB 6xr8)11, but also referred to stabilised 216 

structures determined at different pH values12. ઢH69/ઢV70 is located in a disordered, 217 

glycosylated loop at the distal surface of the NTD, near the binding site of polyclonal antibodies 218 

derived from COV57 plasma13,14 (Extended data 9). As this loop is flexible and highly accessible, 219 

ΔH69/V70 could in principle affect antibody binding in this region. D796 is located near the 220 

base of Spike, in a surface loop that is structurally somewhat disordered in the prefusion 221 

conformation and becomes part of a large disordered region in the post fusion S2 trimer11 222 

(Extended data 9). The loop containing residue 796 is proposed to be targeted by antibodies15, 223 

despite mutations at position 796 being relatively uncommon (Extended data 9). In the RBD-224 

down Spike structures11,12, D796 forms contacts with residues in the neighbouring protomer, 225 

including the glycosylated residue N709 (Extended data 9).  226 

 227 

 228 

Discussion  229 

Here we have documented a repeated evolutionary response by SARS-CoV-2 in the presence of 230 

antibody therapy during the course of a persistent infection in an immunocompromised host. 231 



The observation of potential selection for specific variants coinciding with the presence of 232 

antibodies from convalescent plasma is supported by the experimental finding of two-fold 233 

reduced susceptibility of these viruses to convalescent plasma containing polyclonal antibodies. 234 

In this case the emergence of the variant was not the primary reason for treatment failure.  235 

We have noted in our analysis signs of compartmentalised viral replication based on the 236 

sequences recovered in upper respiratory tract samples. Both population genetic and small 237 

animal studies have shown a lack of reassortment between influenza viruses within a single 238 

host during an infection, suggesting that acute respiratory viral infection may be characterised 239 

by spatially distinct viral populations16,17. In the analysis of data, it is important to distinguish 240 

genetic changes which occur in the primary viral population from apparent changes that arise 241 

from the stochastic observation of spatially distinct subpopulations in the host. While the 242 

samples we observe on days 93 and 95 of infection are genetically distinct from the others, the 243 

remaining samples are consistent with arising from a consistent viral population. We note that 244 

Choi et al reported the detection in post-mortem tissue of viral RNA not only in lung tissue, but 245 

also in the spleen, liver, and heart4. Mixing of virus from different compartments, for example 246 

via blood, or movement of secretions from lower to upper respiratory tract, could lead to 247 

fluctuations in viral populations at particular sampling sites.  248 

 249 

This is a single case report and therefore limited conclusions can be drawn about 250 

generalisability.  251 

An important limitation is that the data were derived from sampling from the upper respiratory 252 

tract and not the lower tract, thus limiting the inferences that can be drawn regarding viral 253 

populations in this single case. 254 

 255 

In addition to documenting the emergence of SARS-CoV-2 Spike ઢH69/ઢV70 in vivo, we show 256 

that this mutation modestly increases infectivity of the Spike protein in a pseudotyping assay. 257 

The deletion was observed contemporaneously with the rare S2 mutation D796H after two 258 

separate courses of CP, with other viral populations emerging. D796H, but not ઢH69/ઢV70, 259 

conferred reduction in susceptibility to polyclonal antibodies in the units of CP administered, 260 



though we cannot speculate as to their individual impacts on sera from other individuals. It is 261 

intriguing that the ઢH69/ઢV70 + D796H double mutant diminished in between CP courses, 262 

suggesting that there were other selective forces at play in the intervening period, possibly 263 

driven by the inflammation observed in the individual. This includes the possibility that the 264 

haplotype with ઢH69/ઢV70 + D796H may have carried mutations in other regions deleterious 265 

during that intervening period. Although ઢH69/V70 is expanding at a high rate18, D796 266 

mutations are also increasing. D796H has been documented in 0.02% of global sequences and 267 

D796Y appears in 0.05% of global sequences (Extended data 9). 268 

 269 

The effects of CP on virus evolution seen here are unlikely to apply in immune competent hosts 270 

where viral diversity is likely to be lower due to better immune control. Our data highlight that 271 

infection control measures may need to be tailored to the needs of immunocompromised 272 

patients and also caution in interpretation of CDC guidelines that recommend 20 days as the 273 

upper limit of infection prevention precautions in immune compromised patients who are 274 

afebrile19. Due to the difficulty with culturing clinical isolates, use of surrogates are warranted20. 275 

However, where detection of ongoing viral evolution is possible, this serves as a clear proxy for 276 

the existence of infectious virus. In our case we detected environmental contamination whilst 277 

in a single occupancy room and the patient was moved to a negative-pressure high air-change 278 

infectious disease isolation room.  279 

 280 

Clinical efficacy of convalescent plasma in severe COVID-19 has not been demonstrated21, and 281 

its use in different stages of infection and disease remains experimental; as such, we suggest 282 

that it should be reserved for use within clinical trials, with rigorous monitoring of clinical and 283 

virological parameters. The data from this single case report might warrant caution in use of 284 

convalescent plasma in patients with immune suppression of both T cell and B cell arms; in such 285 

cases, the antibodies administered have little support from cytotoxic T cells, thereby reducing 286 

chances of clearance and theoretically raising the potential for escape mutations. Whilst we 287 

await further data, where clinical trial enrolment is not possible, convalescent plasma 288 

administered for clinical need in immune suppression should ideally only be considered as part 289 



of observational studies, undertaken preferably in single occupancy rooms with enhanced 290 

infection control precautions, including SARS-CoV-2 environmental sampling and real-time 291 

sequencing. Understanding of viral dynamics and characterisation of viral evolution in response 292 

to different selection pressures in the immunocompromised host is necessary not only for 293 

improved patient management but also for public health benefit. 294 
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 451 

Figure legends 452 

Figure 1. Analysis of 23 Patient derived whole SARS-CoV-2 genome sequences in context of 453 

local sequences and other cases of chronic SARS-CoV-2 shedding. Circularised maximum-454 

likelihood phylogenetic tree rooted on the Wuhan-Hu-1 reference sequence, showing a subset 455 

of 250 local SARS-CoV-2 genomes from GISAID. This diagram highlights significant diversity of 456 

the case patient (green) compared to three other local patients with prolonged shedding (blue, 457 

red and purple sequences). All “United Kingdom / English” SARS-CoV-2 genomes were 458 

downloaded from the GISAID database and a random subset of 250 selected as background.  459 

 460 

Figure 2. Whole genome variant trajectories showing amino acids and relationship to 461 

treatments. Data based on Illumina short read ultra deep sequencing at 1000x coverage. 462 

Variants shown reached a frequency of at least 10% in at least 2 samples. Treatments indicated 463 

are convalescent plasma (CP) and Remdesivir (RDV). Variants described in the text are 464 

designated by labels using the same colouring as the position in the genome. Variants labelled 465 

are represented by dashed lines. A. Variants detected in the patient from days 1-82. *D796H 466 

(light blue) is at the same frequency as NSP3 K902N (orange) therefore it is hidden beneath  B. 467 

Variants detected in the patient from days 82-101.  468 

 469 

Figure 3. Longitudinal variant frequencies and phylogenetic relationships for virus 470 

populations bearing six Spike (S) mutations A. At baseline, all six S variants (Illumina 471 

sequencing) except for ઢH69/V70 were absent (<1% and <20 reads). Approximately two weeks 472 

after receiving two units of convalescent plasma (CP), viral populations carrying ઢH69/V70 and 473 



D796H mutants rose to frequencies >80% but decreased significantly four days later. This 474 

population was replaced by a population bearing Y200H and T240I, detected in two samples 475 

over a period of 6 days. These viral populations were then replaced by virus carrying W64G and 476 

P330S mutations in Spike, which both dominated at day 93. Following a 3rd course of remdesivir 477 

and an additional unit of convalescent plasma, the ઢH69/V70 and D796H virus population re-478 

emerged to become the dominant viral strain reaching variant frequencies of >75%. Pairs of 479 

mutations arose and disappeared simultaneously indicating linkage on the same viral 480 

haplotype. CT values from respiratory samples are indicated on the right y-axis (black dashed 481 

line and triangles). Where there were duplicate readings on the same day, to remain consistent, 482 

N+T samples were plotted B. Maximum likelihood phylogenetic tree of the case patient with 483 

day of sampling indicated. Spike mutations defining each of the clades are shown ancestrally on 484 

the branches on which they arose.  On dates where multiple samples were collect, these are 485 

indicated as endotracheal aspirate (ETA) and Nose + throat swabs (N+T). 486 

 487 

Figure 4: Spike mutant D796H + ΔH69/V70 infectivity and sensitivity convalescent plasma 488 

(CP). A. western blot of virus pellets after centrifugation of supernatants from cells transfected 489 

with lentiviral pseudotyping plasmids including Spike protein. Blots are representative of two 490 

independent transfections. B. Single round Infectivity of luciferase expressing lentivirus 491 

pseudotyped with SARS-CoV-2 Spike protein (WT versus mutant) on 293T cells co-transfected 492 

with ACE2 and TMPRSS2 plasmids.  Infectivity is corrected for reverse transcriptase activity in 493 

virus supernatant as measured by real time PCR. Data points represent technical replicates 494 

(n=3) with mean and error bars representing standard error of mean; data are representative of 495 

two independent experiments C-E. convalescent plasma (CP units 1-3) neutralization potency 496 

against pseudovirus virus bearing Spike mutants D796H, ΔH69/V70  and D796H + ΔH69/V70 F, 497 

G patient serum neutralisation potency against pseudovirus virus bearing Spike mutants D796H, 498 

ΔH69/V70  and D796H + ΔH69/V70. Patient serum was taken at indicated Day (D). Indicated is 499 

serum dilution required to inhibit 50% of virus infection (ID50), expressed as fold change 500 

relative to WT.   Data points represent means of technical replicates and each data point is an 501 

independent experiment (n=2-6). Mean of data points in C-G is shown by horizontal bars.  502 



 503 

 504 

 505 

 506 

Extended data legends:  507 

Extended Data Figure 1: Clinical time line of events with longitudinal respiratory sample CT 508 

values. CT – cycle threshold. 509 

 510 

Extended data 2: A. Blood parameters over time in patient case: White cell count (WCC) and 511 

lymphocyte counts are expressed as x103 Cells/mm3. CRP: C reactive protein. B. Assessment of 512 

T cell and innate function. Whole blood cytokines were measured in whole blood after 24 513 

hours stimulation either after T-cell stimulation with PHA or anti CD3/IL2  or innate stimulation 514 

with LPS . Healthy controls are shown as grey circles (N=15), Patient at d71 and d98 is shown as 515 

blue circles or red circles respectively. Cytokine levels are shown as pg/ml stimulation.  Mean is 516 

shown by line and whiskers representing standard deviation.  517 

 518 
 519 
Extended Data Figure 3. A. Serum SARS-CoV-2 antibody levels and virus population changes in 520 

chronic SARS-CoV-2 infection. Anti SARS-CoV2 IgG antibodies in patient and pre/post 521 

convalescent  plasma compared to RNA+ Covid19 patients and prepandemic healthy controls: 522 

Red, grey and gold: IgG antibodies to SARS-CoV2 nucleocapsid protein (N), trimeric S protein (S) 523 

and the receptor binding domain (RBD) were measured by multiplexed particle based flow 524 

cytometry (Luminex) in  RNA+ COVID-19 patients (N=20, red dots), Pre-pandemic healthy 525 

controls (N=20, grey dots) and in the convalescent donor plasma (orange dots ); Results are 526 

shown as mean fluorescent intensity (MFI)  +/- SD. Patient sera over time in blue: Anti SARS-527 

CoV2 IgG to N (blue squares), S (blue circles) and RBD (blue triangles). Timing of CP units is also 528 

shown. B. SARS-CoV-2 antibody titres in patient and in convalescent plasma. Measurement of 529 

SARS-CoV-2 specific IgG antibody titres in three units of convalescent plasma (CP) by 530 

Euroimmun assay. 531 

 532 



 533 

Extended data 4. Comparison between short-read (Illumina) and long-read single molecule 534 

(Oxford Nanopore) sequencing methods for the six observed Spike mutations. Concordance 535 

was generally good between the majority of timepoints, however due to large discrepancies in 536 

a number of timepoints, we suggest that due to the high base calling error rate, Nanopore is 537 

not yet suitable for calling minority variants. As such, all figures in the main paper were 538 

produced using Illumina data only. B. Single genome sequencing (SGS) data from respiratory 539 

samples at indicated days. Indicated are the number of single genomes obtained at each time 540 

point with the mutations of interest (identified by deep sequencing). *denominator is 19 as for 541 

2 samples the primer reads were poor quality at amino acid 796 at day 98. Amino acid variant 542 

and corresponding nucleotide position: S:W64G = 21752, S:ઢ69 = 21765-21770, S:Y200H = 543 

22160, S:T240I = 22281, S:P330S = 22550, S:D795H = 23948 544 

 545 

Extended Data Figure 5: Evidence for within-host cladal structure.  A.  Pairwise distances 546 

between samples measured using the all-locus distance metric plotted against pairwise 547 

distances in time (measured in days) between samples being collected.  Internal distances 548 

between samples in the proposed main clade are shown in black, distances between samples in 549 

the main clade and samples collected on days 93 and 95 are shown in red, and internal 550 

distances between samples collected on days 93 and 95 are shown in green.  B.  Pairwise 551 

distances between samples in the larger clade (black) and between these samples and those 552 

collected on days 93 and 95 (red).  The median values of the distributions of these values are 553 

significantly different according to a Mann Whitney test.  C.  Pairwise distances between 554 

samples in the main clade, once those collected on days 86, 89, 93, 95 have been removed 555 

(black) and between these samples and those collected on days 86 and 89 (red).  The median 556 

values of the distributions of these values are not significantly different at the 5 level according 557 

to a Mann Whitney test.   558 

 559 

Extended Data Figure 6: A. Close-view maximum-likelihood phylogenetic tree indicating the 560 

diversity of the case patient and three other long-term shedders from the local area (red, blue 561 



and purple), compared to recently published sequences from Choi et al (orange) and Avanzato 562 

et al (gold). Control patients generally showed limited diversity temporally, though the Choi et al 563 

sequences were highly divergent. Environmental samples (patient’s call bell, and patient’s 564 

mobile phone) are indicated. Tree branched have been collapsed where bootstrap support was 565 

<60. 566 

B. Highlighter plot indicating nucleotide changes at consensus level in sequential respiratory 567 

samples compared to the consensus sequence at first diagnosis of COVID-19. Each row 568 

indicates the timepoint the sample was collected (number of days from first positive SARS-CoV-569 

2 RT-PCR). Black dashed lines indicate the RNA-dependent RNA polymerase (RdRp) and Spike 570 

regions of the genome. There were few nucleotide substitutions between days 1-54, despite 571 

the patient receiving two courses of remdesivir. The first major changes in the spike genome 572 

occurred on day 82, following convalescent plasma given on days 63 and 65. The amino acid 573 

deletion in S1, ΔH69/V70 is indicated by the black lines. Sites: Endotracheal aspirate (ETA) or 574 

Nose/throat swabs (N+T).  575 

 576 

Extended Data 7: In vitro infectivity and neutralisation sensitivity of Spike pseudotyped 577 

lentiviruses. A.  infection of target 293T cells expressing TMPRSS2 and ACE2 receptors using 578 

equal amounts of virus as determined by reverse transcriptase activity. Data points represent 579 

technical replicates (n=2), with mean shown with error bars representing standard deviation. 580 

Data are representative of n=2 independent experiments (n=2). B.  Representative Inverse 581 

dilution plots for Spike variants against convalescent plasma units 1-3. Data points represent 582 

mean neutralisation of technical replicates and error bars represent standard error of the mean 583 

of replicates. Data are representative of two independent experiments (n=2). 584 

 585 

Extended Data Figure 8. A. Neutralization potency of a panel of monoclonal antibodies 586 

targeting the RBD is not impacted by Spike mutations D796H or ΔH69/V70. Lentivirus 587 

pseudotyped with SARS-CoV-2 Spike protein: WT (D614G background), D796H, ΔH69/V70, 588 

D796H+ΔH69/V70 were produced in 293T cells and used to infect target Hela cells stably 589 

expressing ACE2 in the presence of serial dilutions of indicated monoclonal antibodies. Data are 590 



means of technical replicates with error bars representing SD. Data are representative of at 591 

least two independent experiments. RBD: receptor binding domain. B. Classes of RBD binding 592 

antibodies and fold changes for Spike mutations D796H or ΔH69/V70 are indicated based 593 

Bouwer et al. Clusters II, V contain only non-neutralising mAbs, smaller neutralising mAb 594 

clusters IV (n=2) and X (n=1) were not tested. Red indicates significant fold changes. 595 

 596 

Extended Data 9. Location of Spike mutations ΔH69/Y70 and D796H. A. The SARS-CoV-2 spike 597 

trimer (PDB ID: 6xr8) with two protomers represented as surfaces and one protomer 598 

represented as a ribbon. The NTD is coloured in light blue, the RBD in light pink, the fusion 599 

peptide in dark pink, the HR1 domain in yellow, the CH domain in pale green, and the CD 600 

domain in brown.  The location of D796 and H69 are indicated by red spheres.  The loop 601 

connecting D796 to the fusion peptide is coloured magenta to improve visibility. The double 602 

grey lines provide orientation relative to the membrane. B. A close-up of the region defined by 603 

the box around H69 in panel A. H69 is highlighted in yellow. Residues containing atoms that are 604 

within 6 Å of H69 are highlighted in cyan. C. A close-up of the region defined by the box around 605 

D796 in panel A.  D796 is highlighted in yellow. Residues containing atoms that are within 6 Å of 606 

D796 are highlighted in cyan. Hydrogen bonds are indicated by dashed yellow lines. 607 

Hydrophobic residues in the vicinity of D796 have been labelled. Y707 is from the neighbouring 608 

protomer. D. Global prevalence of selected spike mutations detailed in this paper. All high 609 

coverage sequences were downloaded from the GISAID database on 6th January and aligned 610 

using MAFFT; as of this date there were 298254 sequences available. The global prevalence of 611 

each of the six spike mutations W64G, ΔH69/V70, Y200H, T240I, P330S and D796H were 612 

assessed by viewing the multiple sequence alignment in AliView, sorting by the column of 613 

interest, and counting the number of mutations. 614 

 615 

Methods 616 

Clinical Sample Collection and Next generation sequencing 617 

Serial samples were collected from the patient periodically from the lower respiratory tract 618 

(sputum or endotracheal aspirate), upper respiratory tract (throat and nasal swab), and from 619 



stool. Nucleic acid extraction was done from 500µl of sample with a dilution of MS2 620 

bacteriophage to act as an internal control, using the easyMAG platform (Biomerieux, Marcy-621 

l'Étoile) according to the manufacturers’ instructions. All samples were tested for presence of 622 

SARS-CoV-2 with a validated one-step RT q-PCR assay developed in conjunction with the Public 623 

Health England Clinical Microbiology22. Amplification reaction were all performed on a 624 

Rotorgene™ PCR instrument. Samples which generated a CT of ≤36 were considered to be 625 

positive.  626 

 627 

Sera from recovered patients in the COVIDx study23 were used for testing of neutralisation 628 

activity by SARS-CoV-2 mutants.  629 

 630 

SARS-CoV-2 serology by multiplex particle-based flow cytometry (Luminex):   631 

Recombinant SARS-CoV-2 N, S and RBD were covalently coupled to distinct carboxylated bead 632 

sets (Luminex; Netherlands) to form a 3-plex and analyzed as previously described (Xiong et al. 633 

2020). Specific binding was reported as mean fluorescence intensities (MFI). 634 

 635 

Whole blood T cell and innate stimulation assay 636 

Whole blood was diluted 1:5 in RPMI into 96-well F plates (Corning) and activated by single 637 

stimulation with phytohemagglutinin (PHA; 10 μg/ml; Sigma-Aldrich), or LPS (1 μg/ml, List 638 

Biochemicals) or by co-stimulating with anti-CD3 (MEM57, Abcam, 200 ng/ml, 1:1000) and IL-2 639 

(Immunotools, 1430U/ml, 1:1000). Supernatants were taken after 24 hours. Levels (pg/ml) are 640 

shown for IFNg, IL17, IL2, TNFa, IL6, IL1b and IL10. Cytokines were measured by multiplexed 641 

particle based Flow cytometry on a Luminex analyzer (Bio-Plex, Bio-Rad, UK) using an R&D 642 

Systems custom kit (R&D Systems, UK).  643 

 644 

For viral genomic sequencing, total RNA was extracted from samples as described. Samples 645 

were sequenced using MinION flow cells version 9.4.1 (Oxford Nanopore Technologies) 646 

following the ARTICnetwork V3 protocol (https://dx.doi.org/10.17504/protocols.io.bbmuik6w) 647 

and BAM files assembled using the ARTICnetwork assembly pipeline 648 



(https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html). A representative set of 649 

10 sequences were selected and also sequenced using the Illumina MiSeq platform. Amplicons 650 

were diluted to 2 ng/µl and 25 µl (50 ng) were used as input for each library preparation 651 

reaction. The library preparation used KAPA Hyper Prep kit (Roche) according to manufacturer’s 652 

instructions. Briefly, amplicons were end-repaired and had A-overhang added; these were then 653 

ligated with 15mM of NEXTflex DNA Barcodes (Bio Scientific, Texas, USA). Post-ligation products 654 

were cleaned using AMPure beads and eluted in 25 µl. Then, 20 µl were used for library 655 

amplification by 5 cycles of PCR. For the negative controls, 1ng was used for ligation-based 656 

library preparation. All libraries were assayed using TapeStation (Agilent Technologies, 657 

California, USA) to assess fragment size and quantified by QPCR. All libraries were then pooled 658 

in equimolar accordingly. Libraries were loaded at 15nM and spiked in 5% PhiX (Illumina, 659 

California, USA) and sequenced on one MiSeq 500 cycle using a Miseq Nano v2 with 2x 250 660 

paired-end sequencing. A minimum of ten reads were required for a variant call. 661 

 662 

Bioinformatics Processes 663 

For long-read sequencing, genomes were assembled with reference-based assembly and a 664 

curated bioinformatics pipeline with 20x minimum coverage across the whole-genome24. For 665 

short-read sequencing, FASTQs were downloaded, poor-quality reads were identified and 666 

removed, and both Illumina and PHiX adapters were removed using TrimGalore v0.6.625. 667 

Trimmed paired-end reads were mapped to the National Center for Biotechnology Information 668 

SARS-CoV-2 reference sequence MN908947.3 using MiniMap2-2.17 with arguments -ax and 669 

sr26. BAM files were then sorted and indexed with samtools v1.11 and PCR optical duplicates 670 

removed using Picard (http://broadinstitute.github.io/picard). A consensus sequences of 671 

nucleic acids with a minimum whole-genome coverage of at least 20× were generated with 672 

BCFtools using a 0% majority threshold. 673 

 674 

Variant calling  675 

Variant frequencies were validated using custom code as part of the AnCovMulti package 676 

(github.com/PollockLaboratory/AnCovMulti). The main idea behind this validation was to 677 



identify and remove consistent potential amplification errors and mutability near the end of 678 

Illumina reads. Furthermore, stringent filtering was applied to remove biased amplification of 679 

early laboratory-induced mutations or very low copy variations.  680 

Filtering consisted of requiring exact initiation at a primer within two bp of the start of a read, a 681 

minimum of 247 bp length read, fewer than four well-separated sites divergent from the 682 

reference sequence, a maximum insertion size of three nucleotides, a maximum deletion size of 683 

11 bp, and resolution of conflicting signal from different primers.  684 

 685 

Single Genome Amplification and sequencing 686 

Viral RNA extracts were reverse transcribed from each sample to sufficiently capture the 687 

diversity of the viral population without introducing resampling bias. SuperScript IV 688 

(Thermofisher Scientific) and the gene specific primers were used for reverse transcription. 689 

Template RNA was degraded with RNAse H (Thermofisher Scientific). All primers used were ‘in-690 

house’ primers designed using the multiple sequence alignment of the patient’s consensus NGS 691 

sequences. Partial Spike (amino acids 21- 800) was amplified as 1 continuous length of DNA 692 

(Spike ~ 1.8 kb) by nested PCR. Terminally diluted cDNA was PCR- amplified using Platinum® 693 

Taq DNA Polymerase High Fidelity (Invitrogen, Carlsbad, CA) so that 30% of reactions were 694 

positive27. By Poisson statistics, sequences were deemed ≥80% likely to be derived from HIV-1 695 

single genomes. We obtained between 20–60 single genomes at each sample time point to 696 

achieve 90% confidence of detecting variants present at ≥8% of the viral population in vivo28,29. 697 

Partial spike amplicons obtained from terminal dilution PCR amplification were Sanger 698 

sequenced to form a contiguous sequence using another set of 8 in-house primers. Sanger 699 

sequencing was provided by Genewiz UK and manual sequence editing was performed using 700 

DNA Dynamo software (Blue Tractor Software Ltd, UK). 701 

 702 

Phylogenetic Analysis 703 

All available full-genome SARS-CoV-2 sequences were downloaded from the GISAID database 704 

(http://gisaid.org/)30 on 16th December. Duplicate and low-quality sequences (>5% N regions) 705 

were removed, leaving a dataset of 212,297 sequences with a length of >29,000bp. All 706 



sequences were sorted by name and only sequences sequenced with United Kingdom / England 707 

identifiers were retained. From this dataset, sequences were de-duplicated and where 708 

background sequences were required in figures, randomly subsampled using seqtk 709 

(https://github.com/lh3/seqtk). All sequences were aligned to the SARS-CoV-2 reference strain 710 

MN908947.3, using MAFFT v7.475 with automatic flavour selection31. Major SARS-CoV-2 clade 711 

memberships were assigned to all sequences using both the Nextclade server v0.9 712 

(https://clades.nextstrain.org/) and Phylogenetic Assignment Of Named Global Outbreak 713 

Lineages (pangolin)32.   714 

  715 

Maximum likelihood phylogenetic trees were produced using the above curated dataset using 716 

IQ-TREE v2.1.233. Evolutionary model selection for trees were inferred using ModelFinder34 and 717 

trees were estimated using the GTR+F+I model with 1000 ultrafast bootstrap replicates35. All 718 

trees were visualised with Figtree v.1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/), rooted 719 

on the SARS-CoV-2 reference sequence and nodes arranged in descending order. Nodes with 720 

bootstraps values of <50 were collapsed using an in-house script. 721 

 722 

In-depth allele frequency variant calling 723 

The SAMFIRE package version 1.06 36 was used to call allele frequency trajectories from BAM 724 

file data. Reads were included in this analysis if they had a median PHRED score of at least 30, 725 

trimming the ends of reads to achieve this if necessary. Nucleotides were then filtered to have a 726 

PHRED score of at least 30; reads with fewer than 30 such reads were discarded. Distances 727 

between sequences, accounting for low-frequency variant information, was also conducted 728 

using SAMFIRE. The sequence distance metric, described in an earlier paper37, combines allele 729 

frequencies across the whole genome. Where L is the length of the genome, we define q(t) as a 730 

4 x L element vector describing the frequencies of each of the nucleotides A, C, G, and T at each 731 

locus in the viral genome sampled at time t. For any given locus i in the genome we calculate 732 

the change in allele frequencies between the times t1 and t2 via a generalisation of the 733 

Hamming distance 734 

 735 
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 736 

where the vertical lines indicate the absolute value of the difference. These statistics were then 737 

combined across the genome to generate the pairwise sequence distance metric 738 

,ଵሻݐሺࢗ൫ܦ 739  ଶሻ൯ݐሺࢗ =෍݀൫ݍ௜ሺݐଵሻ, ଶሻ൯௜ݐ௜ሺݍ  

 740 

The Mathematica software package was to conduct a regression analysis of pairwise sequence 741 

distances against time, leading to an estimate of a mean rate of within-host sequence 742 

evolution. In contrast to the phylogenetic analysis, this approach assumed the samples 743 

collected on days 93 and 95 to arise via stochastic emission from a spatially separated 744 

subpopulation within the host, leading to a lower inferred rate of viral evolution for the bulk of 745 

the viral population.  746 

 747 

All variants were indecently validated using custom code as part of the AnCovMulti package, 748 

found at https://github.com/PollockLaboratory/AnCovMulti. 749 

 750 

Western blot analysis 751 

Forty-eight hours after transfection of cells with plasmid preparations, the culture supernatant 752 

was harvested and passed through a 0.45-μm-pore-size filter to remove cellular debris. The 753 

filtrate was centrifuged at 15,000 rpm for 120 min to pellet virions. The pelleted virions were 754 

lysed in Laemmli reducing buffer (1 M Tris-HCl [pH 6.8], SDS, 100% glycerol, β-mercaptoethanol, 755 

and bromophenol blue). Pelleted virions were subjected to electrophoresis on SDS–4 to 12% 756 

bis-Tris protein gels (Thermo Fisher Scientific) under reducing conditions. This was followed by 757 

electroblotting onto polyvinylidene difluoride (PVDF) membranes. The SARS-CoV-2 Spike 758 

proteins were visualized by a ChemiDoc® MP imaging system (Biorad) using anti-Spike S2 759 

(Invitrogen at 1:1000 dilution) and anti-p24 Gag antibodies (NIH AIDS Reagents 1:1000 dilution).   760 

 761 



Recombination Detection 762 

All sequences were tested for potential recombination, as this would impact on evolutionary 763 

estimates. Potential recombination events were explored with nine algorithms (RDP, MaxChi, 764 

SisScan, GeneConv, Bootscan, PhylPro, Chimera, LARD and 3SEQ), implemented in RDP5 with 765 

default settings38. To corroborate any findings, ClonalFrameML v1.1239 was also used to infer 766 

recombination breakpoints. Neither programs indicated evidence of recombination in our data. 767 

 768 

Structural Viewing 769 

The Pymol Molecular Graphics System v2.4.0 (https://github.com/schrodinger/pymol-open-770 

source/releases) was used to map the location of the four spike mutations of interested onto a 771 

SARS-CoV-2 spike structure visualised by Wrobel et al (PDB: 6ZGE)40.  772 

 773 

Testing of convalescent plasma for antibody titres 774 

The Anti-SARS-CoV-2 ELISA (IgG) assay used to test CP for antibody titres was Euroimmun 775 

Medizinische Labordiagnostika AG. This indirect ELISA based assay uses a recombinant 776 

structural spike 1 (S1) protein of SARS-CoV-2 expressed in the human cell line HEK 293 for the 777 

detection of SARS-CoV2 IgG. 778 

 779 

Generation of Spike mutants 780 

Amino acid substitutions were introduced into the D614G pCDNA_SARS-CoV-2_Spike plasmid 781 

as previously described41 using the QuikChange Lightening Site-Directed Mutagenesis kit, 782 

following the manufacturer’s instructions (Agilent Technologies, Inc., Santa Clara, CA). 783 

 784 

Pseudotype virus preparation 785 

Viral vectors were prepared by transfection of 293T cells by using Fugene HD transfection 786 

reagent (Promega). 293T cells were transfected with a mixture of 11ul of Fugene HD, 1µg of 787 

pCDNAΔ19Spike-HA, 1ug of p8.91 HIV-1 gag-pol expression vector42,43, and 1.5µg of pCSFLW 788 

(expressing the firefly luciferase reporter gene with the HIV-1 packaging signal). Viral 789 

supernatant was collected at 48 and 72h after transfection, filtered through 0.45um filter and 790 



stored at -80˚C. The 50% tissue culture infectious dose (TCID50) of SARS-CoV-2 pseudovirus 791 

was determined using Steady-Glo Luciferase assay system (Promega).  792 

 793 

Standardisation of virus input by SYBR Green-based product-enhanced PCR assay (SG-PERT) 794 

The reverse transcriptase activity of virus preparations was determined by qPCR using a SYBR 795 

Green-based product-enhanced PCR assay (SG-PERT) as previously described44. Briefly, 10-fold 796 

dilutions of virus supernatant were lysed in a 1:1 ratio in a 2x lysis solution (made up of 40% 797 

glycerol v/v 0.25% Trition X-100 v/v 100mM KCl, RNase inhibitor 0.8 U/ml, TrisHCL 100mM, 798 

buffered to pH7.4) for 10 minutes at room temperature. 799 

 800 

12µl of each sample lysate was added to thirteen 13µl of a SYBR Green master mix (containing 801 

0.5µM of MS2-RNA Fwd and Rev primers, 3.5pmol/ml of MS2-RNA, and 0.125U/µl of Ribolock 802 

RNAse inhibitor and cycled in a QuantStudio. Relative amounts of reverse transcriptase activity 803 

were determined as the rate of transcription of bacteriophage MS2 RNA, with absolute RT 804 

activity calculated by comparing the relative amounts of RT to an RT standard of known activity. 805 

 806 

Serum/plasma pseudotype neutralization assay 807 

Spike pseudotype assays have been shown to have similar characteristics as neutralisation 808 

testing using fully infectious wild type SARS-CoV-28.Virus neutralisation assays were performed 809 

on 293T cell transiently transfected with ACE2 and TMPRSS2 using SARS-CoV-2 Spike 810 

pseudotyped virus expressing luciferase45. Pseudotyped virus was incubated with serial dilution 811 

of heat inactivated human serum samples or convalescent plasma in duplicate for 1h at 37˚C. 812 

Virus and cell only controls were also included. Then, freshly trypsinized 293T ACE2/TMPRSS2 813 

expressing cells were added to each well. Following 48h incubation in a 5% CO2 environment at 814 

37°C, the luminescence was measured using Steady-Glo Luciferase assay system (Promega).  815 

 816 

mAb pseudotype neutralisation assay 817 

Virus neutralisation assays were performed on HeLa cells stably expressing ACE2 and using 818 

SARS-CoV-2 Spike pseudotyped virus expressing luciferase as previously described46. 819 



Pseudotyped virus was incubated with serial dilution of purified mAbs9 in duplicate for 1h at 820 

37˚C. Then, freshly trypsinized HeLa ACE2- expressing cells were added to each well. Following 821 

48h incubation in a 5% CO2 environment at 37°C, the luminescence was measured using Bright-822 

Glo Luciferase assay system (Promega) and neutralization calculated relative to virus only 823 

controls. IC50 values were calculated in GraphPad Prism. 824 

 825 

Data Availability 826 

Long-read sequencing data that support the findings of this study have been deposited in the 827 

NCBI SRA database with the accession codes SAMN16976824 - SAMN16976846 under 828 

BioProject PRJNA682013 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA682013). Short reads 829 

and data used to construct figures were deposited at https://github.com/Steven-830 

Kemp/sequence_files. All data are also available from the corresponding author. 831 

 832 

Code Availability 833 

The SAMFIRE package Version 1.06 was used for filtering and calling variants from the Illumina 834 

data. It is available at https://github.com/cjri/samfire/ for review. Additional code was used to 835 

validate the variant frequencies and can be found at 836 

https://github.com/PollockLaboratory/AnCovMulti. 837 
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