170 research outputs found

    The World is One Great Hospital

    Get PDF
    This article attempts to locate the origin of Foucault’s work on biopolitics and biopower in his writings on medicine and medicalization.  Though the concept of biopower is most closely associated with Foucault’ genealogy of the dispositif of sexuality, this essay sets aside the question of sexuality and examines more closely the archeology and genealogy of the medical dispositif to which Foucault dedicated a significant portion of his work throughout the 60’s and 70’s, in order to locate therein the lineage of his thought on biopower and biopolitics.

    Lymphoma and Myeloma Cell Resistance to Cytotoxic Agents and Ionizing Radiations Is Not Affected by Exposure to Anti–IL-6 Antibody

    Get PDF
    Background: Production of high levels of IL-6 is often correlated with resistance to cytotoxics or ionizing radiations, in cancer cell lines as in various cancer patients. We investigated whether monoclonal antibodies directed against IL-6 may enable to reverse resistance of cancer cell lines. Methodology/Principal Findings: We exposed ten haematological cancer cells from lymphoma, myeloma, or leukemia origins to cytotoxics or ionizing radiations and assessed the effects of anti–IL-6 antibody addition on cell proliferation, apoptosis, or IL-6 signaling. A strong correlation between IL-6 secretion, measured by ELISA, and resistance to doxorubicin as ionizing radiations was observed in the multiple myeloma U266 and the Burkitt’s lymphoma Daudi and Namalwa cells. Although an anti–IL-6 antibody combined to both treatments efficiently blocked IL-6 signaling in U266 cells, expressing the IL-6 receptor gp80, it did not increase treatment-induced anti-proliferative and pro-apoptotic effects on these cells, as well as on Daudi and Namalwa cells. This lack of effect could be related to diverse factors: 1) a higher release of the soluble form of IL-6 receptor gp80 in response to doxorubicin and irradiation from all cell lines, 2) an impaired level of the IL-6 pathway inhibitor SOCS3 in Daudi cells, and 3) an increased release of IL-10 and TNFa, two cytokines involved in cell radio- and chemoresistance. Conclusions/Significance: These data support the fact that IL-6 is not the preponderant actor of cell resistance to cytotoxic

    miRNA Profiling: How to Bypass the Current Difficulties in the Diagnosis and Treatment of Sarcomas

    Get PDF
    Sarcomas are divided into a group with specific alterations and a second presenting a complex karyotype, sometimes difficult to diagnose or with few therapeutic options available. We assessed if miRNA profiling by TaqMan low density arrays could predict the response of undifferentiated rhabdomyosarcoma (RMS) and osteosarcoma to treatment. We showed that miRNA signatures in response to a therapeutic agent (chemotherapy or the mTOR inhibitor RAD-001) were cell and drug specific on cell lines and a rat osteosarcoma model. This miRNA signature was related to cell or tumour sensitivity to this treatment and might be not due to chromosomal aberrations, as revealed by a CGH array analysis of rat tumours. Strikingly, miRNA profiling gave promising results for patient rhabdomyosarcoma, discriminating all types of RMS: (Pax+) or undifferentiated alveolar RMS as well as embryonal RMS. As highlighted by these results, miRNA profiling emerges as a potent molecular diagnostic tool for complex karyotype sarcomas

    Segregated hepatocyte proliferation and metabolic states within the regenerating mouse liver.

    Get PDF
    Mammalian partial hepatectomy (PH) induces an orchestrated compensatory hyperplasia, or regeneration, in remaining tissue to restore liver mass; during this process, liver functions are maintained. We probed this process in mice with feeding- and light/dark-entrained animals subjected to sham or PH surgery. Early on (i.e., 10 hours), irrespective of sham or PH surgery, hepatocytes equidistant from the portal and central veins (i.e., midlobular) accumulated the G1-phase cell-division-cycle marker cyclin D1. By 24 hours, however, cyclin D1 disappeared absent PH but was reinforced in midlobular hepatocytes after PH. At 48 hours after PH and 2 hours fasting, synchronously mitotic hepatocytes possessed less glycogen than surrounding nonproliferating hepatocytes. The differential glycogen content generated a conspicuous entangled pattern of proliferating midlobular and nonproliferating periportal and pericentral hepatocytes. The nonproliferating hepatocytes maintained aspects of normal liver properties. Conclusion: In the post-PH regenerating mouse liver, a binary switch segregates midlobular cells to proliferate side-by-side with nonproliferating periportal and pericentral cells, which maintain metabolic functions. Our results also indicate that mechanisms of liver regeneration display evolutionary flexibility. (Hepatology Communications 2017;1:871-885)

    Polyphenic trait promotes liver cancer in a model of epigenetic instability in mice.

    Get PDF
    Hepatocellular carcinoma (HCC) represents the fifth-most common form of cancer worldwide and carries a high mortality rate attributed to lack of effective treatment. Males are 8 times more likely to develop HCC than females, an effect largely driven by sex hormones, albeit through still poorly understood mechanisms. We previously identified TRIM28 (tripartite protein 28), a scaffold protein capable of recruiting a number of chromatin modifiers, as a crucial mediator of sexual dimorphism in the liver. Trim28(hep-/-) mice display sex-specific transcriptional deregulation of a wide range of bile and steroid metabolism genes and development of liver adenomas in males. We now demonstrate that obesity and aging precipitate alterations of TRIM28-dependent transcriptional dynamics, leading to a metabolic infection state responsible for highly penetrant male-restricted hepatic carcinogenesis. Molecular analyses implicate aberrant androgen receptor stimulation, biliary acid disturbances, and altered responses to gut microbiota in the pathogenesis of Trim28(hep-/-) -associated HCC. Correspondingly, androgen deprivation markedly attenuates the frequency and severity of tumors, and raising animals under axenic conditions completely abrogates their abnormal phenotype, even upon high-fat diet challenge. This work underpins how discrete polyphenic traits in epigenetically metastable conditions can contribute to a cancer-prone state and more broadly provides new evidence linking hormonal imbalances, metabolic disturbances, gut microbiota, and cancer. (Hepatology 2017;66:235-251)

    Comparative Effects of R- and S-equol and Implication of Transactivation Functions (AF-1 and AF-2) in Estrogen Receptor-Induced Transcriptional Activity

    Get PDF
    Equol, one of the main metabolites of daidzein, is a chiral compound with pleiotropic effects on cellular signaling. This property may induce activation/inhibition of the estrogen receptors (ER) a or b, and therefore, explain the beneficial/deleterious effects of equol on estrogen-dependent diseases. With its asymmetric centre at position C-3, equol can exist in two enantiomeric forms (R- and S-equol). To elucidate the yet unclear mechanisms of ER activation/inhibition by equol, we performed a comprehensive analysis of ERa and ERb transactivation by racemic equol, as well as by enantiomerically pure forms. Racemic equol was prepared by catalytic hydrogenation from daidzein and separated into enantiomers by chiral HPLC. The configuration assignment was performed by optical rotatory power measurements. The ER-induced transactivation by R- and S-equol (0.1–10 µM) and 17b-estradiol (E2, 10 nM) was studied using transient transfections of ERα and ERβ in CHO, HepG2 and HeLa cell lines. R- and S-equol induce ER transactivation in an opposite fashion according to the cellular context. R-equol and S-equol are more potent in inducing ERα in an AF-2 and AF-1 permissive cell line, respectively. Involvement of ERα transactivation functions (AF-1 and AF-2) in these effects has been examined. Both AF-1 and AF-2 are involved in racemic equol, R-equol and S-equol induced ERα transcriptional activity. These results could be of interest to find a specific ligand modulating ER transactivation and could contribute to explaining the diversity of equol actions in vivo

    Induction of IL-4R alpha-dependent microRNAs identifies PI3K/Akt signaling as essential for IL-4-driven murine macrophage proliferation in vivo

    Get PDF
    Macrophage (MΦ) activation must be tightly controlled to preclude overzealous responses that cause self-damage. MicroRNAs promote classical MΦ activation by blocking antiinflammatory signals and transcription factors but also can prevent excessive TLR signaling. In contrast, the microRNA profile associated with alternatively activated MΦ and their role in regulating wound healing or antihelminthic responses has not been described. By using an in vivo model of alternative activation in which adult Brugia malayi nematodes are implanted surgically in the peritoneal cavity of mice, we identified differential expression of miR-125b-5p, miR-146a-5p, miR-199b-5p, and miR-378-3p in helminth-induced MΦ. In vitro experiments demonstrated that miR-378-3p was specifically induced by IL-4 and revealed the IL-4–receptor/PI3K/Akt-signaling pathway as a target. Chemical inhibition of this pathway showed that intact Akt signaling is an important enhancement factor for alternative activation in vitro and in vivo and is essential for IL-4–driven MΦ proliferation in vivo. Thus, identification of miR-378-3p as an IL-4Rα–induced microRNA led to the discovery that Akt regulates the newly discovered mechanism of IL-4–driven macrophage proliferation. Together, the data suggest that negative regulation of Akt signaling via microRNAs might play a central role in limiting MΦ expansion and alternative activation during type 2 inflammatory settings

    miR-212/132 expression and functions: within and beyond the neuronal compartment

    Get PDF
    During the last two decades, microRNAs (miRNAs) emerged as critical regulators of gene expression. By modulating the expression of numerous target mRNAs mainly at the post-transcriptional level, these small non-coding RNAs have been involved in most, if not all, biological processes as well as in the pathogenesis of a number of diseases. miR-132 and miR-212 are tandem miRNAs whose expression is necessary for the proper development, maturation and function of neurons and whose deregulation is associated with several neurological disorders, such as Alzheimer's disease and tauopathies (neurodegenerative diseases resulting from the pathological aggregation of tau protein in the human brain). Although their involvement in neuronal functions is the most described, evidences point towards a role of these miRNAs in many other biological processes, including inflammation and immune functions. Incidentally, miR-132 was recently classified as a ‘neurimmiR’, a class of miRNAs operating within and between the neural and immune compartments. In this review, we propose an outline of the current knowledge about miR-132 and miR-212 functions in neurons and immune cells, by describing the signalling pathways and transcription factors regulating their expression as well as their putative or demonstrated roles and validated mRNA targets

    Heat shock protein90 in lobular neoplasia of the breast

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Heat shock protein 90 (Hsp90) overexpression has been implicated in breast carcinogenesis, with putative prognostic and therapeutic implications. The purpose of this study is to evaluate the immunohistochemical expression of Hsp90 and to examine whether Hsp90 expression is associated with estrogen receptor alpha (ER-alpha) and beta (ER-beta) immunostaining in lobular neoplasia (LN) of the breast.</p> <p>Methods</p> <p>Tissue specimens were taken from 44 patients with LN. Immunohistochemical assessment of Hsp90, ER-alpha and ER-beta was performed both in the lesion and the adjacent normal breast ducts and lobules; the latter serving as control. As far as Hsp90 evaluation is concerned: i) the percentage of positive cells, and ii) the intensity was separately analyzed. Additionally, the Allred score was adopted and calculated. Accordingly, Allred score was separately evaluated for ER-alpha and ER-beta. The intensity was treated as an ordinal variable-score (0: negative, low: 1, moderate: 2, high: 3). Statistical analysis followed.</p> <p>Results</p> <p>Hsp90 immunoreactivity was mainly cytoplasmic in both the epithelial cells of normal breast (ducts and lobules) and LN. Some epithelial cells of LN also showed nuclear staining, but all the LN foci mainly disclosed a positive cytoplasmic immunoreaction for Hsp90. In addition, rare intralobular inflammatory cells showed a slight immunoreaction. The percentage of Hsp90 positive cells in the LN areas was equal to 67.1 ± 12.2%, whereas the respective percentage in the normal adjacent breast tissue was 69.1 ± 11.6%; the difference was not statistically significant. The intensity score of Hsp90 staining was 1.82 ± 0.72 in LN foci, while in the normal adjacent tissue the intensity score was 2.14 ± 0.64. This difference was statistically significant (p = 0.029, Wilcoxon matched-pairs signed-ranks test). The Hsp90 Allred score was 6.46 ± 1.14 in the LN foci, significantly lower than in the normal adjacent tissue (6.91 ± 0.92, p = 0.049, Wilcoxon matched-pairs signed-ranks test). Within the LN foci, the Hsp90 Allred score was neither associated with ER-alpha, nor with ER-beta percentage.</p> <p>Conclusion</p> <p>Hsp90 was lower in LN foci both at the level of intensity and Allred score, a finding contrary to what might have been expected, given that high Hsp90 expression is detected in invasive breast carcinomas. Hsp90 deregulation does not seem to be a major event in LN pathogenesis.</p

    Plasma miRNA as Biomarkers for Assessment of Total-Body Radiation Exposure Dosimetry

    Get PDF
    The risk of radiation exposure, due to accidental or malicious release of ionizing radiation, is a major public health concern. Biomarkers that can rapidly identify severely-irradiated individuals requiring prompt medical treatment in mass-casualty incidents are urgently needed. Stable blood or plasma-based biomarkers are attractive because of the ease for sample collection. We tested the hypothesis that plasma miRNA expression profiles can accurately reflect prior radiation exposure. We demonstrated using a murine model that plasma miRNA expression signatures could distinguish mice that received total body irradiation doses of 0.5 Gy, 2 Gy, and 10 Gy (at 6 h or 24 h post radiation) with accuracy, sensitivity, and specificity of above 90%. Taken together, these data demonstrate that plasma miRNA profiles can be highly predictive of different levels of radiation exposure. Thus, plasma-based biomarkers can be used to assess radiation exposure after mass-casualty incidents, and it may provide a valuable tool in developing and implementing effective countermeasures
    corecore