1,075 research outputs found
New 4-aryl-1,3,2-oxathiazolylium-5-olates: chemical synthesis and photochemical stability of a novel series of S-nitrosothiols
S-nitrosothiols (RSNOs) remain one of the most popular classes of NO-donating compounds due to their ability to release nitric oxide (NO) under non-enzymatic means whilst producing an inert disulphide byproduct. However, alligning these compounds to the different biological fields of NO research has proved to be problematic due to the inherent instability of such compounds under a variety of conditions including heat, light and the presence of copper ions. 1,3,2-Oxathiazolylium-5-olates (OZOs) represent an interesting subclass of S-nitrosothiols that lock the –SNO moiety into a five membered heterocyclic ring in an attempt to improve the compound’s overall stability. The synthesis of a novel series of halogen-containing OZOs was comprehensively studied resulting in a seven-step route and overall yields ranging between 21 and 37%. The photochemical stability of these compounds was assessed to determine if Snitrosothiols locked within these mesoionic ring systems can offer greater stability and thereby release NO in a more controllable fashion than their non-cyclic counterparts
Temperature controlled martensitic phase transformations in a model NiAl alloy
Liegt in der Abteilung vo
Permeation of CO2 and N2 through glassy poly(dimethyl phenylene) oxide under steady- and presteady-state conditions
Glassy polymers are often used for gas separations because of their high selectivity. Although the dual-mode permeation model correctly fits their sorption and permeation isotherms, its physical interpretation is disputed, and it does not describe permeation far from steady state, a condition expected when separations involve intermittent renewable energy sources. To develop a more comprehensive permeation model, we combine experiment, molecular dynamics, and multiscale reaction–diffusion modeling to characterize the time-dependent permeation of N2 and CO2 through a glassy poly(dimethyl phenylene oxide) membrane, a model system. Simulations of experimental time-dependent permeation data for both gases in the presteady-state and steady-state regimes show that both single- and dual-mode reaction–diffusion models reproduce the experimental observations, and that sorbed gas concentrations lag the external pressure rise. The results point to environment-sensitive diffusion coefficients as a vital characteristic of transport in glassy polymers
Comparative assessment of clinical rating scales in Wilson’s disease
Background: Wilson’s disease (WD) is an autosomal recessive disorder of copper metabolism resulting in multifaceted neurological, hepatic, and psychiatric symptoms. The objective of the study was to comparatively assess two clinical rating scales for WD, the Unified Wilson’s Disease Rating Scale (UWDRS) and the Global Assessment Scale for Wilson’s disease (GAS for WD), and to test the feasibility of the patient reported part of the UWDRS neurological subscale (termed the “minimal UWDRS”). Methods: In this prospective, monocentric, cross-sectional study, 65 patients (median age 35 [range: 15–62] years; 33 female, 32 male) with treated WD were scored according to the two rating scales. Results: The UWDRS neurological subscore correlated with the GAS for WD Tier 2 score (r = 0.80; p < 0.001). Correlations of the UWDRS hepatic subscore and the GAS for WD Tier 1 score with both the Model for End Stage Liver Disease (MELD) score (r = 0.44/r = 0.28; p < 0.001/p = 0.027) and the Child-Pugh score (r = 0.32/r = 0.12; p = 0.015/p = 0.376) were weak. The “minimal UWDRS” score significantly correlated with the UWDRS total score (r = 0.86), the UWDRS neurological subscore (r = 0.89), and the GAS for WD Tier 2 score (r = 0.86). Conclusions: The UWDRS neurological and psychiatric subscales and the GAS for WD Tier 2 score are valuable tools for the clinical assessment of WD patients. The “minimal UWDRS” is a practical prescreening tool outside scientific trials
Molecular basis of titin exon exclusion by RBM20 and the novel titin splice regulator PTB4
RNA-binding motif protein 20 (RBM20) is a cardiac splice regulator that adapts cardiac filling via its diverse substrates-including the sarcomeric protein titin. The molecular basis and regulation of RBM20-dependent exon exclusion are largely unknown. In tissue culture experiments, we show that the combination of RNA recognition motif (RRM) and C-terminus is necessary and sufficient for RBM20 activity, indicating an important function of the ZnF2 domain in splicing repression. Using splice reporter and in vitro binding assays targeting titin exons 241-243, we identified a minimal genomic segment that is necessary for RBM20-mediated splicing repression of the alternative exon. Here, RBM20 binds the cluster containing most RBM20 binding motifs through its RRM domain and represses the upstream and downstream introns. For subsequent exon exclusion, specific regions upstream, downstream and within the alternative exon 242 are required. Regulation of exon exclusion involves PTB4 as a novel titin splice regulator, which counteracts RBM20 repressor activity in HEK293 cells. Together, these mechanistic insights into the regulation and action of RBM20 and PTB4 provide a basis for the future development of RBM20 modulators that adapt titin elasticity in cardiac disease
Recommended from our members
Endoplasmic reticulum stress-independent activation of unfolded protein response kinases by a small molecule ATP-mimic
Indexación: Web of ScienceTwo ER membrane-resident transmembrane kinases, IRE1 and PERK, function as stress sensors in the unfolded protein response. IRE1 also has an endoribonuclease activity, which initiates a non-conventional mRNA splicing reaction, while PERK phosphorylates eIF2α. We engineered a potent small molecule, IPA, that binds to IRE1's ATP-binding pocket and predisposes the kinase domain to oligomerization, activating its RNase. IPA also inhibits PERK but, paradoxically, activates it at low concentrations, resulting in a bell-shaped activation profile. We reconstituted IPA-activation of PERK-mediated eIF2α phosphorylation from purified components. We estimate that under conditions of maximal activation less than 15% of PERK molecules in the reaction are occupied by IPA. We propose that IPA binding biases the PERK kinase towards its active conformation, which trans-activates apo-PERK molecules. The mechanism by which partial occupancy with an inhibitor can activate kinases may be wide-spread and carries major implications for design and therapeutic application of kinase inhibitors.https://elifesciences.org/content/4/e0543
Calcium sensitivity and the Frank-Starling mechanism of the heart are increased in titin N2B region deficient mice
Previous work suggests that titin-based passive tension is a factor in the Frank-Starling mechanism of the heart, by increasing length-dependent activation (LDA) through an increase in calcium sensitivity at long sarcomere length. We tested this hypothesis in a mouse model (N2B KO model) in which titin-based passive tension is elevated as a result of the excision of the N2B element, one of cardiac titin's spring elements. LDA was assessed by measuring the active tension-pCa (-log[Ca2+]) relationship at sarcomere length (SLs) of 1.95, 2.10 and 2.30mum in WT and N2B KO skinned myocardium. LDA was positively correlated with titin-based passive tension, due to an increase in calcium sensitivity at the longer SLs in the KO. For example, at pCa 6.0 the KO:WT tension ratio was 1.28+/-0.07 and 1.42+/-0.04 at SLs of 2.1 and 2.3mum, respectively. There was no difference in protein expression or phosphorylation of sarcomeric proteins. We also measured the calcium sensitivity after PKA treating the skinned muscle and found that titin-based passive tension was also now correlated with LDA, with a slope that was significantly increased compared to no PKA treatment. Finally, we performed isolated heart experiments and measured the Frank-Starling relation (slope of developed wall stress-LV volume relation) as well as diastolic stiffness (slope of diastolic wall stress - volume relation). The FSM was more pronounced in the N2B KO hearts and the slope of the FSM correlated with diastolic stiffness. These findings support that titin-based passive tension triggers an increase in calcium sensitivity at long sarcomere length, thereby playing an important role in the Frank-Starling mechanism of the heart
Reducing RBM20 activity improves diastolic dysfunction and cardiac atrophy
Impaired diastolic filling is a main contributor to heart failure with preserved ejection fraction (HFpEF), a syndrome with increasing prevalence and no treatment. Both collagen and the giant sarcomeric protein titin determine diastolic function. Since titin's elastic properties can be adjusted physiologically, we evaluated titin-based stiffness as a therapeutic target. We adjusted RBM20-dependent cardiac isoform expression in the titin N2B knockout mouse with increased ventricular stiffness. A ~50 % reduction of RBM20 activity does not only maintain cardiac filling in diastole but also ameliorates cardiac atrophy and thus improves cardiac function in the N2B-deficient heart. Reduced RBM20 activity partially normalized gene expression related to muscle development and fatty acid metabolism. The adaptation of cardiac growth was related to hypertrophy signaling via four-and-a-half lim-domain proteins (FHLs) that translate mechanical input into hypertrophy signals. We provide a novel link between cardiac isoform expression and trophic signaling via FHLs and suggest cardiac splicing as a therapeutic target in diastolic dysfunction. KEY MESSAGE: Increasing the length of titin isoforms improves ventricular filling in heart disease. FHL proteins are regulated via RBM20 and adapt cardiac growth. RBM20 is a therapeutic target in diastolic dysfunction
Cardiac sarcomere mechanics in health and disease
The sarcomere is the fundamental structural and functional unit of striated muscle and is directly responsible for most of its mechanical properties. The sarcomere generates active or contractile forces and determines the passive or elastic properties of striated muscle. In the heart, mutations in sarcomeric proteins are responsible for the majority of genetically inherited cardiomyopathies. Here, we review the major determinants of cardiac sarcomere mechanics including the key structural components that contribute to active and passive tension. We dissect the molecular and structural basis of active force generation, including sarcomere composition, structure, activation, and relaxation. We then explore the giant sarcomere-resident protein titin, the major contributor to cardiac passive tension. We discuss sarcomere dynamics exemplified by the regulation of titin-based stiffness and the titin life cycle. Finally, we provide an overview of therapeutic strategies that target the sarcomere to improve cardiac contraction and filling
18F-Labelled exendin to image GLP-1 receptor-expressing tissues: from niche to blockbuster?
Item does not contain fulltext1 maart 201
- …
