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Abstract
The sarcomere is the fundamental structural and functional unit of striated muscle and is directly responsible for most of its
mechanical properties. The sarcomere generates active or contractile forces and determines the passive or elastic properties of
striated muscle. In the heart, mutations in sarcomeric proteins are responsible for the majority of genetically inherited cardio-
myopathies. Here, we review the major determinants of cardiac sarcomere mechanics including the key structural components
that contribute to active and passive tension. We dissect the molecular and structural basis of active force generation, including
sarcomere composition, structure, activation, and relaxation. We then explore the giant sarcomere-resident protein titin, the major
contributor to cardiac passive tension. We discuss sarcomere dynamics exemplified by the regulation of titin-based stiffness and
the titin life cycle. Finally, we provide an overview of therapeutic strategies that target the sarcomere to improve cardiac
contraction and filling.
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Introduction

Cardiac diseases are the leading cause of death for both men
and women in Western countries (Who 2019) and are often
characterized by alterations of active forces(contraction) and/
orpassive forces (myocardium passive tension) (van der
Velden and Stienen 2019). The main source of both active
and passive tension is the cardiomyocyte. Cardiomyocytes
represent about 50% of the cells in the human heart ventricles
(Litvinukova et al. 2020). They are specialized striated muscle
cells that actively generate force, pumping blood into the vas-
cular system, and then relax allowing the passive filling of the
ventricles up to the limits provided by the passive tension of
the organ. Within the cardiomyocyte, sarcomeres are

responsible for the generation of active and passive forces.
Sarcomeres are highly ordered multiprotein complexes longi-
tudinally aligned to give the characteristic striated look of
cardiomyocytes and skeletal muscle cells (Figure 1A).
Active forces are generated by actins and myosins sliding
along each other in a process that involves cross-bridge for-
mation, while passive tension in the sarcomere is generated by
the giant spring protein titin (Maruyama et al. 1977a;
Maruyama et al. 1977b; Horowits and Podolsky 1988). Titin
is the largest protein in the human proteome, and its homeo-
stasis represents a major challenge for muscle cells. In addi-
tion to actin, myosin, and titin, which make up the thin, thick,
and elastic filament system, respectively, more than 200 pro-
teins populate the cardiac sarcomere and are continuously and
dynamically assembled, modified, and degraded to maintain
and adapt cardiac function (Martin and Kirk 2020). Structural
and functional alterations of the sarcomere and its regulators
underlie a wide spectrum of different cardiac diseases, and it is
therefore of critical importance to understanding cardiac sar-
comere mechanics. In this review, we revisit the main deter-
minants of sarcomere mechanics, distinguishing between ac-
tive and passive forces. We discuss the structure of thin, thick,
and titin filaments of the sarcomeres; the cross-bridge forma-
tion; and the importance of other sarcomere-associated pro-
teins. We then describe the Frank-Starling mechanism and
Ca2+ homeostasis as major determinants for sarcomere activa-
tion and the interrelation of diastolic filling and systolic
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ejection. We explore titin as it is the source of passive tension
within the sarcomere and discuss current knowledge about
titin life cycle as a paradigm for sarcomere homeostasis.
Finally, we discuss current and potential therapeutic strategies
targeting the sarcomere with examples for both active and
passive forces. Overall, we aim to provide insights into the
complexity of sarcomere mechanics and its relevance to car-
diac disorders.

Sarcomere structure and protein composition

At its core, the mature cardiac sarcomere is a regular hexago-
nal lattice of thin, actin-containing filaments attached to the Z-
disk and thick, myosin-containing filaments interconnected in
the middle of the sarcomere via the M-band (Figure 1A). In
addition, the filamentous protein titin spans the half-sarcomere
from the Z-disk to M-band and stabilizes contraction, among
other functions discussed below. The structural properties of
sarcomeric proteins and their arrangement are central to car-
diac contraction. Sarcomeres are connected in series at the Z-
disk and arranged in parallel to form bundles of myofibrils
about 1 μm in diameter. Sliding of thick and thin filaments
relative to each other results in muscle contraction.

Thick and thin filaments

The thick filament mainly consists of myosin molecules. The
myosin superfamily encodes 18 classes of myosin motors,
which are ubiquitous in eukaryotes and participate in several
cellular motile processes (Hartman and Spudich 2012). A sub-
set of class II myosins power muscle contraction in striated

muscles, MYH6 (α-MyHC) and MYH7 (β-MyHC), are
known as the cardiac myosin heavy chain isoforms and, albeit
93% identical in humans, display significantly different func-
tional properties. α-MyHC has a higher ATPase activity but
generates less force than β-MyHC (Pope et al. 1980; Aksel
et al. 2015). In the adult human ventricle, the cardiac myosin
composition is 95% β-MyHC and 5% α-MyHC (Reiser et al.
2001), a ratio that further changes in favor of β-MyHC in
cardiac diseases (Bouvagnet et al. 1989; Nadal-Ginard and
Mahdavi 1989). There are two functional units in class II my-
osins, a globular motor domain (myosin head) that contains the
catalytic ATPase site and binds actin and an α-helical coiled-
coil rod domain that dimerizes and assembles into bipolar thick
filaments. In the center of the thick filament, the bare zone is
free of myosin heads as a consequence of the bipolar arrange-
ment of the myosin molecules. Three-dimensional studies on
tarantula thick filaments showed that two myosin heads pack
together to form an interacting-heads motif (IHM) (Woodhead
et al. 2005). The IHM forms only in relaxed muscle and is an
evolutionarily conservedmotif among species andmuscle types
(Alamo et al. 2016). Relaxed myosin exists in two conforma-
tions: disordered relaxation (DRX), with one of the two paired
myosin heads folded (blocked head) and super relaxation
(SRX), with both heads folded back along the thick-filament
backbone. As compared to the DRX conformation, myosins in
SRX do not participate in contraction and conserve energy,
while providing reserve heads that can be activated in response
to increased mechanical need (McNamara et al. 2015). The
thick filaments contain cardiac myosin-binding protein-C
(cMyBP-C) (Carrier et al. 2015), which resides in the A band
and interacts with myosin (Starr and Offer 1978; Alyonycheva

Fig. 1 Sarcomeric structure-function relations.A Schematic of sarcomere
(above) and sarcomere ultrastructure observed by electron microscopy
(below). The sarcomere is an elastic scaffold that consists of structural
proteins lined out from Z-disk toM-band, including actin (black), myosin
(green), and titin (grey) that extends through the half-sarcomere. Scale is

100 nm. BLength-tension relation, a contributor to the Frank-Starling
Law of the heart. Adapted from (Gordon et al. 1966).C Sarcomere length
changes during systole and diastole.DMyofilament compressions during
diastolic filling, Myosin in green and actin in red
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et al. 1997) and titin (Labeit et al. 1992; Soteriou et al. 1993)
and helps maintain sarcomeric structure and regulates cardiac
contraction and relaxation.

The thin filament consists of a double-stranded helix of G-
actin also called filamentous actin (F-actin), two tropomyosin
(Tm) strands, and the three troponin (Tn) subunits, TnT, TnI,
and TnC, which together form the Ca2+-regulatory complex of
the thin filament. Tm strands lie within the two grooves of F-
actin and provide the thin filament with stability, flexibility,
and cooperativity. The adult human heart expresses about
80% α-cardiac actin and 20% α-skeletal actin encoded by
ACTC and ACTA1 genes, respectively. Higher expression of
α-skeletal actin is associated with increased contractility in
mouse (Hewett et al. 1994) and in diseased human hearts
(Copeland et al. 2010). Myosin thick filaments and actin thin
filaments interdigitate and slide past one another to cause sar-
comere shortening (Powers et al. 2021). At the functional
level, the myosin head directly interacts with two adjacent
actin monomers (Behrmann et al. 2012). This attachment of
myosin to actin is a multi-step process (Holmes et al. 2004;
Behrmann et al. 2012) that starts with calcium binding to TnC,
resulting in reduced affinity of TnI for actin (da Silva and
Reinach 1991) and exposing myosin-binding sites on actin
(McKillop and Geeves 1993). Myosin binding to actin further
displaces tropomyosin and prevents its return into the
blocking position (Xu et al. 1999). When calcium dissociates
from troponin, myosin heads detach from actin progressively,
allowing Tm and the troponin complex to move back to an
inhibitory position on the thin filament.

Titin filaments

Within the sarcomere, the giant protein titin spans from the Z-
disk to the M-band and functions as a scaffold and molecular
spring. Titin is encoded by a single gene of 363 exons, and its
passive tension can be adjusted in the long term by titin iso-
form switching via alternative splicing— e.g., peri- and post-
natally to meet the increased needs of the developing heart—
or more readily by post-translational modifications. The titin
region located in the I-band is extensible and consists of
immunoglobulin-like (Ig) domains arranged in tandem, the
PEVK sequence (rich in proline, glutamate, valine, and lysine
residues), and the N2B element. Each functions as a distinct
spring element in series. The portion of titin located in the A
band is inextensible and composed of regular Ig and fibronec-
tin type 3 (Fn3) domains that form so-called super-repeats.
The C-terminal region of titin is located at the M-band and
contains a kinase domain, while the N-terminus is in the Z
disk of the sarcomere. Titin filaments with opposite polarity
overlap and interconnect at both Z-disk and M-band, forming
a contiguous filament along the myofibril. Single-molecule
studies using laser tweezers and atomic force microscopy
(Kellermayer et al. 1997; Li et al. 2002; Watanabe et al.

2002a; Watanabe et al. 2002b) have shown that titin can be
compared to a modular polymer of connected elastic seg-
ments, each with distinct extensibility, acting as a multistage
spring in response to stress applied in the axial direction.
Without external force, titin behaves as an entropic spring,
where each “module” of the spring is folded and resists
stretch. When external force is applied, titin domains unfold
and participate in the entropic elasticity of the newly adjusted
spring characterized by an increased length and a different
spring constant. Upon relaxation, each module folds individ-
ually. The unfolding/refolding order is determined by the in-
trinsic properties of folding pathway for each individual titin
domain. Immunolabeling of selected titin domains in rodent
left ventricular myocardium revealed that tandem Ig domains
in the I-band are extended first, followed by the PEVK seg-
ment, and lastly the N2B segment (Linke et al. 1999;
Trombitas et al. 1999; Trombitas et al. 2000). As a result,
sarcomere passive tension rises slowly at first and then expo-
nentially — limited by the extension of the I-band domains,
the rupture of interfilament interactions, and the resistance of
non-extensible regions. In fact, Ig and Fn3 domains in the A-
band region of titin do not unfold/refold significantly during
physiological contraction cycles, because of the strength of
interaction between titin and the thick filaments (Wang et al.
1991, 1993). This feature preserves the efficiency of the sar-
comere and may function as a molecular ruler, regulating as-
sembly of the thick filament.

Accessory proteins of the sarcomere

A large number of accessory proteins are present within the
sarcomere and support the structural, mechanical, signaling,
and transport functions. These proteins populate predominant-
ly the Z-disk and the M-band of the sarcomere and are often
characterized by a dynamic sarcomeric and/or cellular locali-
zation in response to intra- and extra-cellular signals (Lange
et al. 2006). For instance, ubiquitin E3 ligases MURF1/2/3,
FHL protein family, and CARP are located in the cardiac
sarcomere and in the nucleus. MURFs are present at both
the M-band and Z-disk suggesting a specialized location-
dependent role and can translocate to the nucleus and partic-
ipate to cardiac transcriptional regulation (Willis et al. 2009;
Perera et al. 2011; Willis et al. 2014). FHL2 is highly
expressed in the heart (Scholl et al. 2000) and present in two
regions of the sarcomere (I-band and M-band), as well as the
nucleus, and focal contacts. CARP localizes at the I-band and
Z-disk and acts predominantly as a corepressor of transcrip-
tion through interaction with the ubiquitous transcription fac-
tor YB-1 (Jeyaseelan et al. 1997; Zou et al. 1997). Recently,
the complexity of the protein networks that connect to the
sarcomere Z-disk has been explored using biotin ligase
(BioID) inserted at titin’s Z-disk region, providing a census
of the sarcomeric proteome in the heart and skeletal muscle
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in vivo (Rudolph et al. 2020). This approach was used in
neonatal and adult heathy mice but could be extended to other
sarcomeric regions and pathophysiological states.

Sarcomeric cardiomyopathies

Several genetic cardiac diseases result from mutations in genes
that encode for sarcomere proteins. Particularly, hypertrophic
cardiomyopathy (HCM) and dilated cardiomyopathy (DCM)
are the two predominant types of cardiomyopathy and are high-
ly variable both genetically and phenotypically (Masarone et al.
2018). HCM is characterized by preserved or elevated systolic
function but diminished relaxation resulting from asymmetric
thickening of the ventricular walls, cardiac fibrosis, and cardio-
myocyte disarray (Maron 2010; Harvey and Leinwand 2011).
Conversely, in DCM patients, systolic performance is reduced,
and the ventricle is dilated rather than hypertrophic
(Hershberger et al. 2013; McNally et al. 2013). Both HCM
and DCM have been linked to hundreds of sarcomeric gene
mutations and different pathogenic mechanisms (Yotti et al.
2019). Generally, sarcomeric proteins with missense mutations
are expected to incorporate into the sarcomere and contribute to
disease by disrupting normal mechanical function. Conversely,
gene mutations as insertions, deletions, premature stop codons,
or altered splice sites likely result in unstable proteins that de-
grade prematurely and cause cardiomyopathies through a
haploinsufficiency mechanism (Marston et al. 2009;
Kampourakis et al. 2018). HCM mutations reside mainly in
MYH7 and MYBPC3, and more rarely in MYL2 or MYL3,
which encode the ventricular myosin regulatory light chain
(RLC) or myosin essential light chain (ELC), respectively
(Richards et al. 2015; Marian and Braunwald 2017). Most
HCM mutations in MYH7, MYL2, and MYL3 alter residues
that participate in IHM and change the charge of the encoded
amino acid, possibly resulting in destabilization of SRXmyosin
heads and an increased proportion of myosin heads in DRX
(Alamo et al. 2017). MYBPC3 mutations associated with
HCM have also been linked to changes in the myosin DRX/
SRX-ratio in human hearts (McNamara et al. 2017; Toepfer
et al. 2019). This is likely the result of intermyofilament inter-
actions between cMyBP-C and myosin that have been recently
assessed with unprecedented resolution in the heart (Brunello
et al. 2020). A shift in balance favoring DRX over SRX would
increase the number of available heads for actin interactions,
resulting in hypercontractility, impairment of relaxation, and
increased energy consumption, all hallmarks of HCM. A dif-
ferent mechanism is likely responsible for HCM missense mu-
tations occurring in the rod domain of β-MyHC (Blair et al.
2002; Waldmuller et al. 2002; Richard et al. 2003; Karkkainen
et al. 2004; Van Driest et al. 2004; Hougs et al. 2005; Perrot
et al. 2005). These mutations are located too far from the IHM
and the head to affect myosin SRX-DRX ratio or myosin motor
and ATPase function but can impair assembly and stability of

myofilaments (Buvoli et al. 2008; Armel and Leinwand 2009,
2010; Wolny et al. 2013). Thin filament mutations associated
with HCM are predominantly located in TPM1 (α-tropomyo-
sin), TNNT2 (TnT), TNNI3 (TnI), and ACTC1, resulting in a
phenotypically distinct class of patients with increased risks for
cardiac dysfunction and heart failure (Coppini et al. 2014).
These mutations lead to increase calcium sensitivity and altered
response to signaling pathways, which enhances contractility
but impairs relaxation (Cheng and Regnier 2016; Gangadharan
et al. 2017).

As DCM is characterized by the reduced mechanical force
generation, pathogenic gene mutations (Kamisago et al. 2000;
McNally et al. 2013) result generally in opposite molecular
mechanisms as compared to HCM. In fact, DCM mutations in
MYH7 reduce myosin ATPase activity and motor function
(Schmitt et al. 2006), while DCM mutations in thin-filament
proteins decrease myofibril calcium sensitivity, resulting in re-
duced tension and faster relaxation (Robinson et al. 2007;
Gangadharan et al. 2017). Approximately 90%of titinmutations
are associatedwith DCMphenotype, and the remaining toHCM
(Greaser 2009). Specifically, mutations that lead to titin truncat-
ed variants are highly associated with DCM (Herman et al.
2012; Merlo et al. 2013; Tharp et al. 2019). Integrated analysis
of sequencing and transcriptional data from large human cohorts
has demonstrated that the effect of titin-truncated variants is
dependent on the position of the truncation within the protein
(Roberts et al. 2015). The majority of DCM patients carry titin-
truncated variants located in the A-band (Herman et al. 2012;
Roberts et al. 2015; Akinrinade et al. 2016; Schafer et al. 2017),
but in general, truncations occurring in constitutive (highly
expressed) exons of titin lead to DCM (Roberts et al. 2015).
Mechanisms by which titin-truncating variants cause DCM are
probably related to haploinsufficiency rather than dominant neg-
ative effects. In fact, truncated titin peptides are not found in
DCM hearts (Roberts et al. 2015) likely due to nonsense-
mediated decay and rapid turnover of the mutant peptides
(Schafer et al. 2017). Accessory proteins of the sarcomere con-
tribute to cardiac contraction and are linkedmechanically to thin,
thick, and titin filaments as well as additional non-sarcomeric
compartments. Mutations of these proteins can also lead to
HCM and DCM (Selcen and Carpen 2008; Lange et al. 2020;
Wadmore et al. 2021) and have shown to exhibit altered
contractility via different mechanisms (Adams et al. 2007;
Friedrich et al. 2012; Crocini et al. 2013).

Active forces

The contractile function of the heart is intimately related to the
mechanical properties of sarcomeres as their building blocks
and is determined by structural parameters of orientation and
density of cardiac sarcomeres and by temporal parameters
affecting sarcomere activation and relaxation.
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The Frank-Starling mechanism

Cardiac contraction and shortening dynamically adjusts
on a beat-to-beat basis in response to changes during car-
diac filling. This phenomenon is historically referred to as
the Frank–Starling Law of the heart (Zimmer 2002; Shiels
and White 2008; Sequeira and van der Velden 2015). The
law describes the direct relationship between length of the
cardiac fibers and the force generated in contraction. This
mechanism links changes in cardiac filling to the subse-
quent ejection of blood into the circulation: an increase in
venous return dilates the ventricles, stretching the myo-
cardium that respond by increasing both contractility and
stroke volume. In this way, the Frank–Starling mechanism
is central to the regulation of cardiac output. For decades,
the underlying mechanism for the Frank-Starling Law was
considered the degree of overlap between the actin and
myosin filaments, or sarcomere length, which would guar-
antee maximum number of cross-bridges (Gordon et al.
1966). The development of active tension is optimal near
the resting sarcomere length, ~ 2 μm, and decreases at
higher or lower sarcomere lengths. One can define a de-
scending limb of the isometric length–tension relation, at
sarcomere lengths above 2.2 μm, and an ascending limb
of the isometric length–tension relation, at sarcomere
lengths below ~ 2 μm (Figure 1B). The cardiac sarcomere
operates between ~ 2 and 1.8 μm (Spotnitz et al. 1966),
i.e., in the ascending limb of the isometric length–tension
relation, in which active tension increases with an in-
crease in sarcomere length. Increased diastolic filling re-
sults in an increase in sarcomere length and thus an in-
crease in the tension-generating capacity as more myosin
heads within the cardiac myocytes are able to bind to
actin (Figure 1C). However, a significant increase in ac-
tive tension occurs over the region 2.0–2.2 μm in mam-
mals (Fabiato and Fabiato 1975; Allen and Kentish 1985),
suggesting that myofilament overlap cannot completely
account for the length–tension relation in cardiac muscle
(Jewell and Wilkie 1960; Hill 1964). Titin has been sug-
gested to play a major role in the length-dependent acti-
vation of active force in the heart. Radial forces generated
by titin would reduce lateral spacing between thick and
thin filaments at higher sarcomere length (Figure 1C, D)
that may also influence the affinity of Ca2+ ions to the
negatively charged myofilaments (McDonald and Moss
1995; Wang and Fuchs 1995). This would at least in part
explain direct relationship between myofilament length
and their sensitivity to Ca2+ ions, as indicated in the
Frank-Starling Law. Several other structural and molecu-
lar mechanisms are likely participating to the Frank-
Starling Law and include post-translation modifications
of myofilament proteins and sarcomere-independent com-
ponents (Sequeira and van der Velden 2017). Although a

unifying idea that describes the Frank–Starling Law of the
heart is still missing, it is an essential component for the
cardiac function, and its understanding could help develop
therapeutic strategies for human heart disease.

Calcium homeostasis

Cytosolic calcium concentration is fundamental for mechani-
cal activation of the sarcomere. At rest, intracellular calcium
concentration is at submicromolar level but rises during the
plateau phase of the cardiac action potential, thanks to the
cardiac-specific voltage-sensitive L-type Ca2+ channels. This
unique cardiac current triggers release of additional calcium
from the sarcoplasmic reticulum via the ryanodine receptor
(RyR, calcium-induced calcium release) (Bers 2002) that ac-
tivates contraction. Collectively, this process is called
excitation–contraction (E-C) coupling (Fozzard et al. 1992;
Bers 2002; Page, 2002). The level of sarcomere activation is
not simply proportional to cytosolic calcium concentration,
but rather it is the result of a complex and dynamic signaling
process that is regulated by numerous factors (de Tombe
2003). However, there is generally a direct relationship be-
tween the magnitude of the calcium transient and the sarco-
mere (ventricle) contraction (Gwathmey and Hajjar 1990;
Backx et al. 1995; Bassani et al. 1995), thus making calcium
one of the major determinants of heart contractility. Altered
intracellular Ca2+ handling underlies numerous cardiac dis-
eases. In heart failure, for example, E-C coupling is affected
by functionally defective L-type Ca2+ channels (Piot et al.
1996; Barrere-Lemaire et al. 2000; He et al. 2001) and in-
creased space between L-type Ca2+ channels and the RyR
(Gomez et al. 1997), as well as decreased Ca2+ content in
the sarcoplasmic reticulum (Lindner et al. 1998; O'Rourke
et al. 1999; Hobai and O'Rourke 2001) and altered channel-
gating property of RyR (Yamamoto et al. 1999; Ono et al.
2000; Yano et al. 2000; Marx et al. 2001). Sarcomere activa-
tion not only depends on the amount of Ca2+ released at each
given heartbeat but also on the rate of Ca2+ release across the
cell (Yano et al. 2005). To ensure a synchronized activation of
all sarcomeres within each cell, mammalian cardiac myocytes
are provided with a complex network of membrane invagina-
tions called the transverse-axial tubular system or t-
tubules(Ferrantini et al. 2013). T-tubules allow for rapid and
homogenous propagation of the cardiac action potential, thus
Ca2+ entry, and affect cardiac sarcomere mechanics. Loss of t-
tubules by acute formamide-induced osmotic shock
(detubulation) induces prolonged contraction kinetics and im-
paired force–frequency response and can be, at least in part,
mitigated by improving Ca2+ synchrony and propagation
(Ferrantini et al. 2014). T-tubular structural remodeling re-
duces Ca2+ synchrony in failing human hearts (Louch et al.
2004) and murine cardiac disease models (Louch et al. 2006;
Wei et al. 2010; Heinzel et al. 2011), and also, t-tubule
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functional remodeling (Crocini et al. 2017) can affect Ca2+

propagation and contraction (Crocini et al. 2014; Crocini
et al. 2016a; Crocini et al. 2016b; Scardigli et al. 2018).

Passive forces

When cardiac muscle is stretched beyond its resting sarcomere
length, it develops passive tension. Passive tension is
essential for the heart as it contributes to the diastolic wall
tension that determines the extent of filling of the ventricle
and the subsequent stroke volume (for reviews, see Allen
and Kentish 1985; Brady,1991a). Passive tension is also im-
portant in the activated myocardium because it participates in
determining the shortening velocity of cardiac trabeculae (de
Tombe and ter Keurs 1992) and cardiac myocytes (Sweitzer
and Moss 1993). Over the working range of the heart (sarco-
mere lengths 1.8-2.2 μm), collagen and titin are the most
important contributors to passive tension, with collagen dom-
inating at the longer sarcomere lengths of the working range
and titin at the shorter lengths (Linke et al. 1994; Granzier and
Irving 1995). Collagen is a fibrous protein of the extracellular
matrix packed to form long, thin, and strong fibrils. Notably,
cardiac fibrosis with altered collagen expression and compo-
sition is a hallmark of many cardiac diseases and can dramat-
ically affect cardiac contraction and relaxation (Travers et al.
2016). Minor contributions are also provided by intermediate
filaments, measured as ~ 10-fold less than titin, and even less
by microtubules. Here, we focus on the titin protein as it rep-
resents the sarcomeric source of passive tension.

Titin-based passive tension

As mentioned, titin-based stiffness can be adjusted both in the
long term by titin isoform switching (Granzier and Irving
1995; Opitz et al. 2004) or more rapidly by post-
translational modifications (Koser et al. 2019). Abnormal iso-
form ratios or post-translational modifications can dramatical-
ly affect passive tension of cardiomyocytes and have been
described in many human cardiac diseases (LeWinter and
Granzier 2014). In the heart, there are 3 main types of titin
isoforms: fetal cardiac titin, adult N2BA, and adult N2B. They
differ in their I-band extensible regions. Fetal cardiac titin
isoforms are longer and more compliant than either N2B or
N2BA (Lahmers et al. 2004; Opitz et al. 2004) (Figure 2A).
These isoforms could be beneficial in fetal-neonatal develop-
ment because of the low filling pressure of the fetal heart and
the structural constraints provided by other tissues that limit
cardiac reserve in the fetus (Walker and de Tombe 2004).
Fetal isoforms gradually disappear during postnatal develop-
ment in favor of the mature N2BA and N2B. Titin N2BA
isoforms have a longer PEVK sequence and a variable number
of additional Ig domains resulting in more compliant isoforms

than N2B titin. Both isoforms are co-expressed in the cardiac
sarcomere, and their ratio is a determinant of passive stiffness.
In adult human left ventricle, the N2BA/N2B ratio is ~0.6 and
can change in disease (Neagoe et al. 2002; Makarenko et al.
2004; Nagueh et al. 2004) (Figure 2B). The N2BA:N2B ratio
is increased in DCM patients (Nagueh et al. 2004) and would
result in reduced passive tension leading to reduced diastolic
forces and dilation of the heart, both hallmarks of DCM.
Switching to the longer N2BA isoform could represent an
initial compensatory mechanism that improves diastolic func-
tion; however, long-term reduction of passive tension and
diastolic pressure could worsen contractile performance in
systole (Makarenko et al. 2004).

The RNA-binding motif 20 (RBM20) is a well-
characterized regulator of cardiac isoform expression for titin
and over 30 additional genes (Guo et al. 2012; Maatz et al.
2014; van den Hoogenhof et al. 2018; Lennermann et al.
2020). RBM20 is regarded as a splicing repressor. In the case
of titin pre-mRNA, RBM20 binds and represses splicing of
large stretches of exons, allowing alternative splice sites at the
3′ or 5′ end of RBM20-repressed regions to splice together
(Li et al. 2013). However, loss of RBM20 function leads to
larger titin proteins, with reduced N2B isoform and upregu-
lation of N2BA isoform and another, giant, and even more
compliant titin isoform called N2BA-G. As a result, myocar-
dial stiffness is reduced, and resting sarcomere length is in-
creased (Greaser et al. 2008; Guo et al. 2012; Methawasin
et al. 2014; Beqqali et al. 2016; Methawasin et al. 2016).
RBM20 mutations lead to a severe form of DCM with high
rates of heart failure, arrhythmias, and sudden cardiac death
(Brauch et al. 2009; Li et al. 2010; Wells et al. 2013; van den
Hoogenhof et al. 2018), a complex phenotype resulting from
missplicing of several RBM20 target genes (Guo et al. 2012;
Maatz et al. 2014). In particular, missplicing of the RBM20-
target calcium/calmodulin-dependent protein kinase II
(CaMKII), a crucial modulator of E-C coupling in
cardiomyocytes (Maier and Bers 2007), is likely responsible
for altered cellular calcium handling and cellular calcium
overload observed in RBM20 cardiomyopathy (van den
Hoogenhof et al. 2018).

In order to meet beat-to-beat requirements of the heart,
titin tension can be modulated via post-translational modifi-
cations of titin spring elements (Koser et al. 2019), especial-
ly N2B and PEVK unique sequences. A few kinases have
been implicated in titin phosphorylation, including protein
kinase A (PKA), protein kinase G (PKG), and CaMKII
(Kruger et al. 2009; Hamdani et al. 2013; Kotter et al.
2013; Koser et al. 2019). PEVK phosphorylation (via
CaMKII) increases titin stiffness, while N2B phosphoryla-
tion (via PKG and PKA) decreases it. Abnormal regulation
of signaling pathways has been found in numerous cardiac
diseases and can affect titin passive tension. For example,
human failing hearts show increased cardiomyocyte passive
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tension via hyperphosphorylation of PEVK and reduced
phosphorylation of N2B (Hopf et al. 2018). Targeting intra-
cellular pathways holds very promising therapeutic potential
and has been already validated in animal models (Eisenberg
et al. 2016; Hopf et al. 2018; Leite-Moreira et al. 2018;
Slater et al. 2019).

Titin life cycle

Considering the impressive molecular weights of titin and the
plethora of possible isoforms, it could be tempting to think
that titin protein homeostasis is a static and slow process.
However, titin dynamics studies revealed an unexpected level
of protein mobility in and out of sarcomeres (da Silva et al.
2011; Rudolph et al. 2019; Cadar et al. 2020). Pulse-chase
experiments demonstrated that the protein half-life of titin is
approximately 70 h in cultured skeletal muscle cells (Isaacs
et al. 1989). Using isolated neonatal cardiomyocytes from a
titin-eGFP knock-in mouse model in combination with fluo-
rescent recovery after photobleaching (FRAP) imaging, a later
work (da Silva et al. 2011) reported that the exchange half-life
for titin in the sarcomere is 2.1 h. Taken together, these two
works would suggest the existence of a pool of sarcomeric and
non-sarcomeric titin molecules that can rapidly exchange in
the sarcomere as they move within hours and are replaced
within days. Titin synthesis, motility, and sarcomeric
(dis)integration have been further resolved using FRAP and
a bifluorescently labeled knock-in mouse to simultaneously
visualize both ends of titin molecules (Rudolph et al. 2019).
This work demonstrated that there is a pool (> 15%) of soluble
titin molecules readily available for integration into the sarco-
mere. Additionally, this work showed that titin is inserted into
the mature sarcomere stochastically from either ends of the
protein— starting at the Z-disk or at theM-band— in contrast
with myofibrillogenesis predictions (Rhee et al. 1994; Du
et al. 2008). Titin dynamics differed considerably between
embryonic and mature cardiomyocytes, highlighting the com-
plexity of cardiac sarcomere assembly and roles at various life
stages.

The sarcomere as a therapeutic target

There is a remarkable growth of knowledge about sarcomere
mechanics and how active and passive forces are regulated in
disease states. Translation of these findings to the clinics has
been facilitated by both technological advances in model sys-
tems and analysis tools, including the generation of small and
large animal models (e.g., using CRISPR/Cas9 technology)
and the advent of induced pluripotent stem cell (iPSC) tech-
nology. The differentiation of iPSCs into cardiomyocytes has
seen tremendous advances (Hirt et al. 2014; Ronaldson-
Bouchard et al. 2018), and efforts combining iPSC-derived
cardiomyocytes with clinically relevant animal models are
generating fundamental insights to understanding mecha-
nisms of cardiac pathology and to exploring different thera-
peutic strategies (Coppini et al. 2014). For instance, a func-
tional readout has been developed to study TnT mutations
leading to HCM or DCM (Pettinato et al. 2020), RBM20
therapy has been validated in a DCM model (Briganti et al.
2020), and disruption of SRX state has been linked to
hypercontractility in cells harboring a MYH7 mutation
(Vander Roest et al. 2021). These new experimental tools
confirm that the sarcomere is an excellent therapeutic target
(Table 1) — due to both the number of mutations in sarco-
meric proteins causing human disease and because of its
unique role in determining systolic and diastolic properties.
Therapeutic approaches that directly target the primary cause
of inherited cardiomyopathies, i.e., genetic mutations of sar-
comere proteins, are limited, but targeting the sarcomere has
shown promising results in ameliorating a wide variety of
cardiomyopathies. We discuss here sarcomere targets and po-
tential therapies distinguishing between active and passive
forces.

Targeting active forces

Genetic approaches to revert sarcomere mutations have been
explored in animal models and iPSC-derived cardiomyocytes
(Gedicke-Hornung et al. 2013; Jiang et al. 2013; Mearini et al.

Fig. 2 Titin-based passive tension. A Developmental changes in titin
isoform expression facilitate the transition from fetal to adult force
generation. B The relationship of sarcomere length and passive tension

changes in disease via posttranslational modifications (protein kinases
PKA, PKC, PKG acting on the titin spring region) and changes in titin
isoform expression (N2BA to N2B titin isoform ratio)
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2013; Prondzynski et al. 2017; van Kampen and van Rooij
2019), but translation to the patient could be challenging due
to possible off-target effects of gene-editing, invasiveness, and
poor efficiency of delivery methods. To date, cardiac gene
therapy in adult heart failure patients has been attempted with
an adeno-associated viral vector encoding the non-sarcomeric
gene SERCA2a under control of a cytomegalovirus promoter
and intracoronary infusion (Jessup et al. 2011; Zsebo et al.
2014; Greenberg et al. 2016; Hulot et al. 2017; Lyon et al.
2020) with relatively disappointing outcomes. Considering
their central role in sarcomere mechanics, Ca2+ handling and
myofilament Ca2+ sensitivity stand out as targets to treat car-
diac disease. L-type Ca2+ channel blockers are well
established to treat intracellular calcium overload in cardio-
vascular disease (Rosing et al. 1979; Akhtar et al. 1989;
Udelson et al. 1989; Gistri et al. 1994; Ho et al. 2015).
Promising results to reduce myofilament Ca2+ sensitivity have
been obtained with catechins, contained in green tea, in an
animal model of genetic HCM (Adhikari and Wang 2004).
Furthermore, molecules developed to inhibit calmodulin

(Hidaka et al. 1980; Silver et al. 1986; Osawa et al. 1998) hold
promise to exert a similar inhibitory effect on myofilaments
due to the structural homology between calmodulin and cTnC.
In the heart, the positive inotropic effect of β-adrenergic sig-
naling is accompanied by reduced myofilament Ca2+ sensitiv-
ity via PKA phosphorylation of cTnI (Ser23/24) (Zhang et al.
1995; Kentish et al. 2001). β-Adrenergic receptor antagonists
(β-blockers) have been used for decades to treat a variety of
cardiac diseases, including hypertension, heart failure, cardiac
arrhythmias, and myocardial infarction. Among the β-
blockers used in clinical therapy, nebivolol has been reported
to additionally desensitize cardiac myofilaments (Zeitz et al.
2000). Clinical trials using small molecules to change sarco-
mere mechanics are promising and include the selective car-
diac myosin activator omecamtiv mecarbil to treat systolic
heart failure (Teerlink et al. 2021) and the selective myosin
inhibitor mavacamtem to treat obstructive HCM (Olivotto
et al. 2020). Mavacamtem acts on myosin and stabilizes the
SRX configuration thus reducing hypercontractility (Kawas
et al. 2017; Anderson et al. 2018). Cardiac myosin isoform

Table 1 Sarcomere targets and potential therapies

Target Potential therapy

Active forces

Mutant genes Gene therapy

•cMyBPC •Trans-splicing (Mearini et al. 2013)

•cMyBPC •mRNA silencing (Gedicke-Hornung et al. 2013)

•cMyBPC •Gene replacement (Mearini et al. 2014)

Myofilament Ca2+ sensitivity Ca2+ desensitizers

•Catechins (Adhikari and Wang 2004)

•cTnC •Calmodulin antagonists (Hidaka et al. 1980; Silver et al. 1986; Osawa et al. 1998)

•β-blockers: nebivolol (Zeitz et al. 2000)b

•cTnI •β3 adrenergic receptor agonist (Lee et al. 2010)

Myosin Small molecules

•Myosin activator: omecamtiv mecarbil (Teerlink et al. 2021)a

•Myosin inhibitor: mavacamtem (Olivotto et al. 2020)a

Genetic approaches

•Allele specific mRNA silencing (Jiang et al. 2013)
•Isoform composition: lnRNA Myh7b (Broadwell et al. 2021)

Passive forces

Titin Small molecules

•Titin phosphorylation •Phosphodiesterase-5 inhibitor: sildenafil (Redfield et al. 2013; Hoendermis et al. 2015)

•Titin phosphorylation •Phosphodiesterase-9 inhibitor (Lee et al. 2015)

•Titin phosphorylation •β3 adrenergic receptor agonist (Lee et al. 2010)

•Titin phosphorylation •Metformin (Slater et al. 2019)

Genetic approaches

RBM20 Gene therapy

•RBM20 modulation (Methawasin et al. 2014; Hinze et al. 2016; Methawasin et al. 2016; Pulcastro et al. 2016)

a In clinical trial
b In the clinics
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ratio is known to change in favor ofβ-MyHC in disease; thus,
strategies to counteract this isoform shift could be of benefit.
The RNA transcript of the ancient myosin 7b (MYH7b) —
non-translated in mammalian hearts (Rossi et al. 2010;
Warkman et al. 2012; Lee et al. 2019; Peter et al. 2019) —
inc ludes a long non-coding RNA that has been
demonstrated capable of regulating the expression ratio of
α -MyHC and β -MyHC in human iPSC-der ived
cardiomyocytes, and thus may represent a novel therapeutic
target (Broadwell et al. 2021).

Targeting passive forces

Titin is an excellent target to address cardiac diseases related
to altered passive tension. High sarcomere passive stiffness
due to low PKG titin phosphorylation is found in some pa-
tients with heart failure. PKG activity depends on the levels of
cyclic guanosine monophosphate and may be increased via
inhibition of phosphodiesterases. However, treatments of
heart failure patients with the phosphodiesterase-5 inhibitor,
sildenafil (Redfield et al. 2013; Hoendermis et al. 2015) did
not improve outcomes. Promising results have been obtained
by inhibiting phosphodiesterase-9A in diseased human tissues
(Lee et al. 2015), although its expression in failing human
cardiomyocytes remains uncertain (Li et al. 2019). Other stud-
ies have shown that the specific stimulation of β3 adrenergic
receptors may exert beneficial effects incardiomyocytes by
increasing PKG activity (Gauthier et al. 1998; Hammond
and Balligand 2012). PKG phosphorylates the same PKA site
in cTnI (Ser23/24) reducing myofilament Ca2+ sensitivity
(Lee et al. 2010). Thus, activation of β3 adrenergic receptor
would conveniently decrease myofilament Ca2+ sensitivity
while improving sarcomere relaxation.

In a mouse model of heart failure with preserved ejection
fraction, administration of metformin, used in patients to treat
type 2 diabetes, improved diastolic function based on the
phosphorylation of a PKA site on N2B domain of
titin (Slater et al. 2019). An alternative strategy to change
passive tension builds on RBM20 to target titin isoform ex-
pression and has been explored in different experimental
models of diastolic dysfunction (Methawasin et al. 2014;
Hinze et al. 2016; Methawasin et al. 2016). Improved ventric-
ular filling and exercise capacity, reduced end-diastolic pres-
sure, and increased expression of hypertrophic genes were
associated with negative effects on the Frank–Starling mech-
anism, force generation, and slower cross-bridge kinetics
(Pulcastro et al. 2016), highlighting the tight connection be-
tween passive and active forces in the sarcomere. Together
with titin, the extracellular matrix represents a major contrib-
utor of cardiac passive tension. Fibrosis, the excessive depo-
sition of collagen and altered composition of the extracellular
matrix, is a hallmark of several cardiac diseases. Although we
focused this review on forces originating from the sarcomere,

combating cardiac fibrosis remains an essential clinical inter-
vention (Travers et al. 2016). Notably, fibrosis can induce a
switch to the more compliant N2BA titin isoform to partially
counteract increased collagen-based stiffness (Neagoe et al.
2002; Makarenko et al. 2004; Nagueh et al. 2004; Hamdani
et al. 2010). Although non-sarcomeric in nature, antifibrotic
therapy could affect titin isoform composition. Advances in
biomaterial sciences to control the extracellular stiffness
(Walker et al. 2021; Jian et al. 2014; Crocini et al. 2020;
Shimkunas et al. 2021), could help dissecting the crosstalk
between the cardiac sarcomere and the extracellular matrix
and their relative contribution to cardiac passive tension.

Concluding remarks

Cardiac diseases remain an enormous burden and unresolved
medical problem worldwide. The need for novel therapeutic
approaches and interventions is obvious, and targeting cardiac
sarcomeres is a powerful and effective strategy to combat
cardiac disorders. Significant progress has been made toward
understanding cardiac sarcomere structure and function, but a
comprehensive and detailed picture is still missing— starting
with the complete survey of the dynamic sarcomeric prote-
ome, its interactions and adaptation in health and disease.
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