50 research outputs found

    Saving the world’s terrestrial megafauna

    Get PDF
    From the late Pleistocene to the Holocene, and now the so called Anthropocene, humans have been driving an ongoing series of species declines and extinctions (Dirzo et al. 2014). Large-bodied mammals are typically at a higher risk of extinction than smaller ones (Cardillo et al. 2005). However, in some circumstances terrestrial megafauna populations have been able to recover some of their lost numbers due to strong conservation and political commitment, and human cultural changes (Chapron et al. 2014). Indeed many would be in considerably worse predicaments in the absence of conservation action (Hoffmann et al. 2015). Nevertheless, most mammalian megafauna face dramatic range contractions and population declines. In fact, 59% of the world’s largest carnivores (≥ 15 kg, n = 27) and 60% of the world’s largest herbivores (≥ 100 kg, n = 74) are classified as threatened with extinction on the International Union for the Conservation of Nature (IUCN) Red List (supplemental table S1 and S2). This situation is particularly dire in sub-Saharan Africa and Southeast Asia, home to the greatest diversity of extant megafauna (figure 1). Species at risk of extinction include some of the world’s most iconic animals—such as gorillas, rhinos, and big cats (figure 2 top row)—and, unfortunately, they are vanishing just as science is discovering their essential ecological roles (Estes et al. 2011). Here, our objectives are to raise awareness of how these megafauna are imperiled (species in supplemental table S1 and S2) and to stimulate broad interest in developing specific recommendations and concerted action to conserve them

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Data and script for Bayesian hierarchical model

    No full text
    Data are from questionnaire surveys conducted across tea estates in the landscape surrounding Kaziranga, Assam, Northeast India, on stakeholder attitudes towards the Asian elephant and its conservation. Script file is for assessing stakeholder attitudes while accounting for reporting error, using a Bayesian hierarchical model implemented in R and RStudio. Associated information is provided in Conservation Biology article titled 'A Bayesian hierarchical approach to quantifying stakeholder attitudes toward conservation in the presence of reporting error', authored by Divya Vasudev and Varun Goswami

    Application of photographic capture-recapture modelling to estimate demographic parameters for male Asian elephants

    No full text
    In addition to the threats of habitat loss and degradation, adult males of the Asian elephant Elephas maximus also face greater threats from ivory poaching and conflict with humans. To understand the impact of these threats, conservationists need robust estimates of abundance and vital rates specifically for the adult male segment of elephant populations. By integrating the identification of individual male elephants in a population from distinct morphology and natural markings, with modern capture-recapture (CR) sampling designs, it is possible to estimate various demographic parameters that are otherwise difficult to obtain from this long-lived and wide-ranging megaherbivore. In this study, we developed systematic individual identification protocols and integrated them into CR sampling designs to obtain capture histories and thereby estimate the abundance of adult bull elephants in a globally important population in southern India. We validated these estimates against those obtained from an independent method combining line-transect density estimates with age-sex composition data for elephants. The sampled population was open to gains and losses between sampling occasions. The abundance of adult males in the 176 km2 study area was N^(SÊN^)=134(14.20) and they comprised 14% (±1%) of the total elephant population. Time-specific abundance estimates for each sampling occasion showed a distinct increase in adult male numbers over the sampling period, explained by seasonal patterns of local migration. CR-based estimates for adult male abundance closely matched estimates from distance-based methods. Thus, while providing abundance data of comparable rigour and precision, photographic CR methods permit estimation of demographic parameters for the Asian elephant that are both urgently needed and difficult to obtain

    “In a tree by the brook, there’s a songbird who sings”: Woodlands in an agricultural matrix maintain functionality of a wintering bird community - Fig 2

    No full text
    <p><b>Predicted site-use of a) non-insectivorous guilds and b) insectivorous guilds as a function of vegetation and proximity effects as estimated through single-season occupancy models.</b> Predictions were model-averaged across all converged models; shaded regions represent associated standard errors. Covariates were standardized to have a mean of 0 and standard deviation of 1. Guilds where covariate effect has weak support are marked with an asterisk (‘*’). Guilds where covariate effect is unsupported are not included. Guild abbreviations: NEC (Nectarivores), GRN (Granivores), OMN (Omnivores), FRG (Frugivores), LHG (Large high-canopy gleaning insectivores), LUG (Large understory gleaning insectivores), LHS (Large high-canopy sallying insectivores), SMG (Small mid-canopy gleaning insectivores), SUG (Small understory gleaning insectivores), SMS (Small mid-canopy sallying insectivores), LWP (Large woodpeckers).</p

    “In a tree by the brook, there’s a songbird who sings”: Woodlands in an agricultural matrix maintain functionality of a wintering bird community

    No full text
    <div><p>The agricultural matrix has increasingly been recognized for its potential to supplement Protected Areas (PAs) in biodiversity conservation. This potential is highly contextual, depending on composition and spatial configuration of matrix elements and their mechanistic relationship with biological communities. We investigate the effects of local vegetation structure, and proximity to a PA on the site-use of different guilds in a wintering bird community within the PA, and in wooded land-use types in the surrounding matrix. We used occupancy models to estimate covariate–guild relationships and predict site-use. We also compared species richness (estimated through capture–recapture models) and species naïve site-use between the PA and the matrix to evaluate taxonomic changes. We found that tree cover did not limit the site-use of most guilds of the community, probably due to high canopy cover across all chosen sites. Exceptions to this were guilds comprising generalist species. Shrub cover and bamboo cover had important effects on some woodland-associated guilds, suggesting a change in limiting factors for site-use under adequate tree cover. Site-use across the matrix was high for all analyzed guilds. This was found to be due to three non-exclusive reasons: (i) presence of one or more ubiquitous species (found all across the landscape) within some guilds, (ii) redundancy of species within guilds that buffered against a decrease in site-use, and (iii) turnover in guild composition/abundances to more generalist species from PA to matrix. Estimated species richness was higher in the matrix (107± 11; mean ± SE) than in the PA (90± 7), which may have been in part due to the addition of generalist species in the matrix. Understanding factors that limit biological communities is crucial to better managing the ever-increasing matrix for biodiversity conservation. Our study provides insights into the effects of different components of vegetation structure on the bird community in wooded land-use types in the matrix. We highlight the value of woodlands surrounding PAs in maintaining multiple guilds, and hence, the functionality of a wintering bird community. However, we caution that the matrix may fall short in retaining some specialized species of the community.</p></div
    corecore